Об АВР и стоечных переключателях / Хабр

Содержание

Автоматический ввод резерва

В данной схеме используется электромагнитное реле или контактор K1 с одним переключающим контактом. Обычно такая схема применяется в однофазных сетях с небольшим током нагрузки. В данной схеме катушка реле питается от основного ввода, и в нормальном режиме его сердечник притянут, левый по схеме контакт К1 замкнут, правый разомкнут. При пропадании напряжения на основном вводе катушка реле отпускает сердечник, левый контакт размыкается, а правый становится замкнутым. Питание на нагрузку поступает от резервного ввода.

Данная простейшая схема имеет множество недостатков, и обычно в таком виде не используется. Главная причина — то, что при значительных колебаниях напряжения в сети, реле будет часто переключаться, что неблагоприятно как для самого реле, так и для питающихся электроприборов. В дальнейшем будут рассмотрены более сложные и более надежные схемы АВР.

Представленная ниже схема автоматического включения резерва, в отличие от предыдущих, более применяемая, и годится уже для системы электропитания в частном доме или его части, коммутируемая нагрузка вполне может составлять десятки киловатт:

В данной схеме устранены предыдущие недостатки, и ее можно рекомендовать как базовую для применения в домах, коттеджах, административных и производственных зданиях с потребляемой мощностью до 100 кВт.

Описанная ниже схема электропитания является исключительно простой. Она может применяться для электроснабжения хозяйства с малой потребляемой мощностью, порядка нескольких киловатт

Вот такая схема:

Разберем ее подробно. В рабочем состоянии автоматы SA1 и SA2 включены. При наличии на основном вводе на К1 поступает питание, его контакт К1.1 замкнут, и потребители получают питание через него. В случае исчезновения напряжения реле К1 обесточивается, К1.1 размыкается, а К1.2 наоборот, замыкается. Схема готова к питанию от резервного источника и, при наличии на нем напряжения, подача электроэнергии потребителям возобновляется.

В качестве К1 нужно выбирать мощное реле, которое достаточно дефицитное. Обычно предлагаются реле на коммутируемый ток до 16А. На большие токи можно в качестве К1 взять контактор, но не любой, у него должен быть размыкающий (в просторечии «нормально замкнутый») силовой контакт. Поэтому данная схема и предлагается для маломощных, до 16А, подключений. Если у реле есть несколько контактных групп, то можно их запараллелить, но такое редко делается, обычно для больших токов берется схема с реверсивным пускателем либо на симисторах. В промышленности применяются более сложные схемы — придет время, мы их тоже рассмотрим.

К недостаткам данной схемы можно отнести то, что катушка К1 включена до прибора учета, что может не понравиться энергопоставщику, но это легко устранить, переставив счетчик выше по схеме, это будет учтено далее, здесь же ошибка пусть остается, как напоминание.

Схема, лишенная указанных недостатков, будет показана ниже. Здесь тоже не обошлось без контактора с размыкающими силовыми контактами.

Предлагаемая схема на основе контактора 2з+2р типа VS463-22 позволяет использовать ее при токах до 63А:

Схема отличается дешевизной и простотой, в ней исправлены недостатки предыдущей схемы:

В схеме используется контактор VS463-22-230. Здесь, в отличие от предыдущей схемы, коммутируется как фазный, так и нулевой провода, что исключает попадание тока от генератора в сеть. Один замыкающий контакт К1.1 включен до катушки, что не позволит контактору самопроизвольно включаться при повторном появлении напряжения на главном вводе после отключения. При появлении напряжения на основном вводе, чтобы заново запитаться от него, нужно кратковременно нажать кнопку SB1, после чего контактор включится и замкнет контакты К1.1 и К1.2, одновременно с этим разомкнет К1.3 и К1.4.

При пропадании напряжения на главном вводе К1.1 и К1.2 отключаются, а питание в дом поступает от резерва через К1.3 и К1.4. В качестве резерва используется какой-либо автономный источник электроэнергии, поэтому он подключается, минуя счетчик. Если резервный источник настроен так, что он автоматически отключается при возобновлении питания на основном вводе, то схему нужно изменить — убрать кнопку SB1, а К1.1 перенести ниже по схеме, в разрыв фазного провода непосредственно перед Q1, а катушку запитать напрямую к выходам счетчика. Впрочем, такая схема со схемой запуска резервного генератора будет скоро опубликована отдельной статьей.

Добавлю, что потребляет катушка около 5 Ватт, стоит контактор около 2500 рублей.

Где купить реле и контакторы?

На момент написания данной статьи, пожалуй, единственный интернет-магазин (в России), в котором подобные комплектующие имеются всегда в достаточном ассортименте и по нормальным ценам — это АВС-электро

Алгоритмы систем АВР

Система АВР должна работать по определенному алгоритму, учитывающему возможное поведение оборудования и внешние факторы. Приводится типичная блок-схема бытовой системы АВР

Вот примерно по такому алгоритму должна работать простая система АВР с резервным двигатель-генератором:

При сбое в электроснабжении система сначала выжидает несколько секунд и, если положение не нормализовалось, идет команда на запуск автономного генератора. Начинается отсчет времени, необходимого для запуска приводного двигателя. На нашей схеме ожидание равно 20 секундам, но может быть и другим, в зависимости от конкретного двигателя.

В случае удачного запуска, если никакая защита не обнаруживает ненормальных режимов, идет отключение потребителя от питающей сети, и после этого — подключение к резервному источнику, который к этому времени уже запущен, и готов принять нагрузку. После этого потребители начинают работать от резервного источника электропитания.

В случае неудачного запуска делается пауза в 10 секунд и после этого предпринимается попытка повторного запуска. А в случае и второй неудавшейся попытки предпринимается третья по тому же алгоритму. В случае третьей неудачи попытки запуска прекращаются, а сигнализация показывает, что двигатель запустить не удалось.

При восстановлении электроснабжения на основном вводе выжидается одна минута и, если за этот промежуток времени сбоев не происходит, то питание переключается на основной ввод. Двигатель генератора еще 2 минуты работает и, если на основном вводе все нормально, генератор останавливается.

Развивая тему АВР с бензогенератором в качестве резервного источника питания, предлагаю на ваш суд практическую схему с автоматическим запуском генератора и автоматическим переключением питания с сети на автономный источник и обратно

Собственно, схему я уже публиковал здесь, и она представляет собой не идеальное, но вполне работоспособное решение. К недостаткам можно отнести всего лишь одну попытку запуска. При неудаче повторную попытку можно произвести, только сбросив схему с помощью кнопки. Хотя при появлении напряжения на главном вводе, схема сбрасывается самостоятельно.

Безусловно, подобное решение можно сделать и с помощью микроконтроллеров, но для понимания логики и наглядности удобней изучать релейную схему.

Секционированные системы АВР

Теперь о секционированных системах АВР. Характерные признаки таких систем — разделение нагрузки на две или более независимых питающих линии. В случае выхода из строя одного из вводов, его нагрузка подключается к исправному.

Такая схема более гибкая и удобна для ремонтных и профилактических работ. Так как оба ввода в работе, отпадает необходимость следить за готовностью резервной линии к принятию нагрузки. Но наличие в схеме секционного выключателя или контактора несколько усложняет ее. Несмотря на это, схема с двумя секциями в настоящее время самая распространенная в распредустройствах как низкого, так и высокого напряжения.

На схеме ниже показана основа сенкционированной АВР:

Кратко: SA1 и SA2 — автоматы, защищающие свои линии, К1-К3 — контакторы, либо выключатели с дистанционным управлением. Пока все просто, но надо обеспечить работу К1-К3 по определенному алгоритму. При кажущейся простоте, здесь много подводных камней, поэтому нет единой универсальной схемы управления, и немного позже мы рассмотрим несколько вариантов реализации двухсекционной системы автоматического включения резерва.

Ниже приведена схема АВР двухсекционной системы с минимальным количеством элементов и с простейшей логикой:

Как видим, всю логику решают два контактора. Когда напряжение присутствует на обеих вводах, каждая секция питается от своего ввода. Это нормальный режим работы. В случае пропадания напряжения на одном из вводов отключается соответствующий контактор (К1 или К2). При этом секция отключается от своего ввода (контактом К1.1 или К2.2) и подключается к другому, рабочему, вводу соответственно контактом К1.2 или К2.2. При возобновлении питания контактор срабатывает и схема возвращается в исходное состояние.

Читать статью  Оборудование для производства гофротары (линии переработки) - ГофроТайм

При практическом использовании данной схемы, в первую очередь, нужно учитывать, что недопустима ситуация, когда замыкающий контакт уже замкнул цепь, а размыкающий еще не разомкнул. Поэтому нужно очень внимательно подойти к выбору контакторов. Также желательно, чтобы вводы были сфазированы, чтобы, если вдруг такое произойдет (например, приварились контакты), облегчить последствия. В дальнейшем мы будем совершенствовать схему, добавим выдержки времени и различные блокировки.

АВР на двух контакторах или магнитных пускателях

На двух контакторах можно реализовать очень простую и понятную схему автоматического резервирования электропитания:

Схема очень простая, предназначена для однофазных цепей. Минимум деталей, тем не менее схема готова к практическому использованию. Порядок работы: включаем поочередно SA1 и SA2. Если напряжение было на вводе 1, то оно будет питать нагрузку, ввод 2 будет резервным. В этой схеме нет явно выраженных основного и резервного ввода. При исчезновении напряжения на одном из вводов питание переключится на другой. При повторном появлении напряжения на отключенном вводе ничего не произойдет до того момента, пока не пропадет напряжение на включенном вводе.

Схема достаточно надежная даже без механической блокировки пускателей, которая, впрочем, тоже не будет лишней. Чтобы переключить питание на другой ввод, достаточно кратковременно отключить питание ввода автоматом SA1 или SA2. Логика работы схемы проста, поэтому описывать особо нечего. Замыкающие контакты контакторов должны быть рассчитаны на полный ток нагрузки, для размыкающих это неважно (можно использовать блок-контакты).

блок АВР

В настоящее время промышленность в большом ассортименте выпускает готовые блоки АВР. В основном, это программируемый контроллер в блоке с выходными реле. Наиболее ходовые и дешевые устройства обычно делаются для монтажа на din-рейку, шириной примерно в 15 стандартных однополюсных автоматов. Рассмотрим одно из них, относительно простое.

Элементы систем АВР

Вот, к примеру, блок ввода резервного питания AVR-01, взятый в качестве иллюстрации к данной статье. Стоит ящичек в районе 150 американских рублей, недорого в общем, так что попробуем разобраться, что он делает, и чего не делает.

Итак, заявленные функции:

Блок контролирует параметры напряжения на основном и резервном вводах питания. Нагрузка подключается к основному
вводу. При аварии на основном вводе нагрузка переключается на резервный. При восстановлении напряжения нагрузка переключается на основной ввод питания.

Функциональные особенности:
1. Контроль чередования фаз.
2. Контроль асимметрии между фазами.
3. Контроль верхнего и нижнего значения напряжения.
4. Контроль состояния контактов контактора.
5. Внешние входы аварийного отключения вводов.

Напряжение питания: 230 В АС(питание от фазы C)
Количество вводов: 2
Максимальный ток контактов реле: 2х8А АС1
Максимальный ток катушки контактора: 2А
Контакт 2х(1Z,1R)
Порог напряжения — регулируемый:
нижний U1 160 — 210 В
верхний U2 230 — 260 В
Время отключения:
для нижнего порога U1 2 сек.
для верхнего порога U2 0,1 сек.
Время переключения с основного
на резервный ввод 0,5 сек.
Время включения основного ввода при восстановлении напряжения, регулируемое 2 сек.- 10 мин.

Ну что тут сказать? Цена соответствует содержанию, на отдельных реле дешевле вряд ли получилось бы. Два восьмиамперных контакта — маловато, но в отдельных случаях позволяет обойтись без дополнительного контактора. Но для случая АВР с самозапуском бензогенератора нужно другое устройство, реализующее более сложный алгоритм, описанный мною в этой статье немного выше.

В продолжение об одном полезном реле для систем АВР.

Реле-счетчик импульсов

Крепление осуществляется как с помощью съемных винтовых зажимов, так и стандартно на din-рейку, в зависимости от модификации.

На лицевой панели реле расположен трехдекадный переключатель «Уставка» для установки заданного количества импульсов, поступающих на вход «Y1», индикатор включения напряжения питания «Сеть», индикатор срабатывания встроенного электромагнитного реле «Реле» и DIP — переключатель «Функция» для выбора диаграммы работы и интервала времени, когда будет включено встроенное исполнительное реле. DIP-переключатель состоит из четырех независимых контактных пар (переключателей).

Реле имеет 8 значений выдержки времени, которые выбираются с помощью контактных пар 1,2,3 DIP — переключателя «Функция». Диаграмма работы выбирается с помощью переключателя 4 в соответствии с таблицей. Таблица расположена на боковой стенке устройства.

Когда переключатель 4 находится в нижнем положении, работа реле начинается с «импульса». Встроенное исполнительное реле (далее реле) включается одновременно с подачей питания на прибор и выключается после отсчета заданного количества импульсов (уставки) «N» на переключателе «Уставка».

Время выключения реле определяется установленной выдержкой времени «t» в соответствии с диаграммой. Верхнее положение 4 переключателя соответствует работе реле с «паузы» (при подаче питания реле остается в выключенном состоянии).

Реле включается после отсчета уставки «N» на время установленной выдержки времени «t». Когда реле включено, замкнуты контакты 15-18 и 25-28 и включен желтый индикатор «Реле», когда выключено — замкнуты контакты 15-16 и 25-26, желтый индикатор выключен.

Обнуление сосчитанного количества импульсов или установка реле в исходное состояние во время отсчета установленной выдержки времени осуществляется по переднему фронту команды «Сброс». По заднему фронту команды «Сброс» счет импульсов заново возобновляется. Во время действия команды «Сброс» счетный вход заблокирован. Команда «Сброс» подается на вход «Y2».

Имеется возможность изменения уставки во время подсчета импульсов. При изменении уставки в меньшую сторону и, если сосчитанное количество импульсов оказывается больше значения новой уставки, реле переключится на установленное время «t» согласно выбранной диаграмме работы и вернется в исходное состояние, при этом счетчик обнулится. В других случаях подсчет импульсов будет продолжен до установленного нового значения.

Напряжение питания АСDС24 В подается на клеммы «+А3» и «А2» (причем при постоянном напряжении плюс подается строго на +А3), а напряже­ние АС220 В — на клеммы «А1» и «А2». Сигналы внешнего сброса и входных импульсов можно сформировать путем замыкания и размыкания клемм «Y1», «Y2» с «А1»при напряжении питании АС220В или клемм «Y1», «Y2» и «+А3»при напряжении питания АСDС24 В. Схема подключения реле приведена на рис.3,4 и на шильдике, расположенном на корпусе реле. При изменении вре­менных интервалов и диаграммы работы реле необходимо выключить.

Из технических характеристик:

  • Время готовности не более 0,15 с
  • Максимальная частота следования импульсов 25 Гц
  • Максимальное коммутируемое напряжение 400В
  • Максимальный коммутируемый ток при активной нагрузке 5А

Из схемы подключения видно, что входные импульсы — не что иное, как подача питающего напряжения на входы Y1 и Y2.

Демонстрация работы блока АВР (видео)

Вот хороший и наглядный рассказ о том, как работает блок АВР:

Промышленные системы АВР

Среди отечественных производителей комплексных систем автоматического включения резерва выделяется предприятие ОАО «Контактор», которое поставляет на российский рынок шкафы АВР с различной логикой (секционированное и несекционированное питание, с возможностью подключения дополнительного автономного генератора и т.д.) и элементной базой (схема управления может быть как релейной, так и микропроцессорной).

Силовая часть системы собрана на автоматических выключателях ВА50-45Про номинальным током до 6300 Ампер, производителем которых является тот же «Контактор». Данные устройства предназначены для работы на стороне 0.4 кВ. Схемы АВР в установках выше 1000В тоже широко применяются, но это уже отдельная история.

Блок авр на 2 ввода

Определенный интерес представляет моноблочная конструкция системы автоматического ввода резерва от китайской фирмы ANDELI под названием HATS7. Удобная панель управления позволяет настроить алгоритм работы под нужды клиента, силовая часть системы, показанной на фото слева, рассчитана на токи до 160А. Ну так как китайский ампер будет поменьше нашего (шутка), я бы не пробовал его на длительных токах выше 100А. Панель управления может быть вынесена за пределы щита в более удобное место — например, на дверцу щита. Данный блок АВР можно настроить на работу с двумя линиями либо с одной линией и автономным генератором. Силовая часть — это два автомата либо контактора, которыми управляет приводной механизм. Естественно, электрическая и механическая блокировка имеется. Каким образом это делается на автоматах — смотрите на рисунке справа.

блок АВР

привод блока АВР

АВР на реверсивном рубильнике с электроприводом

перекидной рубильник с электроприводом

  • Сетевой источник питания – резервный источник питания, автоматическое переключение, самовозврат
  • Основной – основной источник питания, автоматическое переключение и самовозврат с тестированием потери фазы
  • Основной – основной источник питания, автоматическое переключение и самовозврат с тестированием перенапряжения и минимального напряжения
  • Основной источник питания – генератор, автоматическое переключение и самовозврат с тестированием перенапряжения, минимального напряжения и частоты

Использование автономных источников электроэнергии в системах АВР

Там, где резервное электропитание нужно в небольших масштабах и на короткое время, можно воспользоваться аккумуляторными батареями. Но это уже отдельная тема, которой у меня посвящена отдельная статья «Бесперебойники»

Также в целях резервного источника питания можно использовать бензогенератор (как вариант — дизельный, газовый и т.д.). Об этом у меня немного написано здесь: АВР с бензогенератором

Об АВР и стоечных переключателях

АВР – очень широкое понятие. Совершенно одинаково называются устройства, которые трудно назвать одним прибором. Мы видим и однофазный модульный АВР на 16 ампер, и, совсем не похожий на него, АВР на 6 400 А. При этом, оба носят абсолютно одинаковое наименование – автоматический ввод резерва.

Читать статью  Инструкция по охране труда для оператора линии розлива

Как пример

Как пример «большого» АВРа

Это вполне обосновано, ведь основная их задача — обеспечить резервирование электропитания ответственной нагрузки. АВРы отличаются не только токами, но и большим количеством других электрических и временных параметров, зависящих от того в какой сети и для питания каких нагрузок они предназначаются. Неизменным остается только наличие, как минимум, двух вводов и одного вывода.

С приходом в нашу жизнь импортного телекоммуникационного оборудования и зарубежных стандартов, проникло и новое словосочетание — стоечный переключатель нагрузки. Они могут быть двух основных типов: ATS (Automatic Transfer Switch) и STS (Static Transfer Switch). Статический переключатель (STS) это отдельный класс устройств, мы их касаться не будем. А вот автоматический переключатель (ATS) это и есть наш родной АВР. Тот же самый АВР, только имеющий свои особенности и специфику подключаемой нагрузки, которая располагается на тех же 19-ти дюймовых направляющих по соседству.

Типичный представитель стоечных переключателей из-за океана

Типичный представитель стоечных переключателей из-за океана

Поговорим подробнее о сходствах и различиях ATS и АВР, почему это не одно и тоже? Или, может быть, одно и тоже.

Итак, какие потребители требуют надежного и бесперебойного электроснабжения?

Во многих секторах экономики технология производства или оказания услуг имеет в своей основе непрерывные процессы, перебои в которых не допустимы. Это и медицина, и промышленное производство, и добыча полезных ископаемых, и транспортировка энергоресурсов, и IT-сектор, куда же без него во время всеобщей цифровизации.

Перерывы в электроснабжении некоторого оборудования могут привести не просто к краткосрочной остановке, а вызывают каскад проблем: остановку технологического процесса, рассинхронизацию работы различных систем, потерю ценных данных. Для кого-то это прямые финансовые потери, для кого-то большие репутационные риски.

Повысить надежность электроснабжения ответственного оборудования призваны наши АВРы и ATSы. Чем же они похожи?

И тот, и другой предназначены для обеспечения питания оборудования с одним вводом от двух независимых источников питания. Оба производят переключение электропитания на резервный источник при исчезновении напряжения на основном. Это главное, что их объединяет.

Может ли АВР размещаться на 19-ти дюймовых направляющих? Конечно, может. Как говорится, мой АВР, куда хочу туда и ставлю )) Существует немало модификаций АВРов собранных в 19” корпусах, в том числе выпускаемых серийно.

Вариант серийного образца АВР для установки в телекоммуникационный шкаф.

Вариант серийного образца АВР для установки в телекоммуникационный шкаф.

АВР и ATS, также, могут иметь и схожие характеристики по току нагрузки, например в 32А.

Будет не верным утверждение, что ATSы устанавливают только после ИБП. Не редким является случай, когда на один из входов подается «чистое» питание от ИБП, а на второй «грязное» питание от другого источника. И тут опять они схожи.

В чем же разница?

В нюансах, в небольших нюансах, которые, в большинстве случаев, делают замену одного на другое не только не рекомендуемой, но и недопустимой.

И так, начнём с АВРов, они роднее как-то.

Поскольку мы говорим об АВР и стоечных переключателях, мы не будем рассматривать те АВРы, которые питают «дома, заводы, пароходы». Обратим внимание на те модификации, которые питают потребителей в сфере телекома, автоматизации, центров обработки данных и т.п. Они, как правило, уже адаптированы по своим электрическим и габаритным характеристикам. Но как я писал выше: есть нюансы, которые могут быть чужды ATSам, но очень нужны АВРу.

АВР должен питать нагрузку напряжением, соответствующим «норме» или, как говорят, уставкам. Часто требуется задать уставки для каждого ввода индивидуально. Уставки могут быть не только по напряжению, а также, по времени задержки возвращения на приоритетный ввод. Это требование продиктовано возможными переходными процессами при восстановлении питания в сети.

АВР с плавной регулировкой уставок по напряжению и времени

АВР с плавной регулировкой уставок по напряжению и времени

Иногда необходимо назначить приоритет какому-либо из вводов. И да, периодически этот приоритет может изменяться. Живой пример: летом более надёжен один источник питания, зимой другой (наша страна велика и слабо изучена).

АВР должен, при всех превратностях источника питания, сохранять свою работоспособность. Конечно, снижение напряжения или его исчезновение не способно навредить АВРу, а вот повышение очень даже способно. АВР должен стоически переносить всевозможные скачки напряжения в питающей сети, а также, возможные перекосы напряжения по фазам при различных нештатных ситуациях. По этой причине самые простые схемы АВР, реализованные просто на контакторах и автоматах, являются не очень надежными.

Во-первых, контакторы никогда не отключатся при повышении напряжения и продолжат питать нагрузку «неправильным» напряжением. Во-вторых, их катушки перегреются и сгорят. Бывают особо экстремальные случаи, когда вместо положенных 220В в сети может быть до 380В.

Лирическое отступление. Ранее я работал в компании, которая поставляла комплектные шкафы связи, в том числе в них были установлены и АВРы, собранные по простой схеме: два силовых контактора, реле приоритета и само собой автоматы. На одной из электроподстанций, при работах на щите собственных нужд, все контакторы на основном вводе и катушки реле приоритета ввода нам пожгли, ну и еще кое чего немножко…!

Поскольку АВР установлен в сети «грязного» питания, он должен иметь возможность отключить питание нагрузки. В том числе, при повышении напряжения на вводе и, при этом, сам не сгореть. Поэтому схемы АВРа без надежных реле контроля напряжения на входе, работающих при повышении значения напряжения до линейного, мы бы не рекомендовали применять.

Повредит ли такая устойчивость к «неприятностям» стоечному переключателю? Нет, ни сколько. Просто она ему, как правило, не нужна… Но и мешать она не будет!

Иногда АВРы могут иметь более двух вводов, могут подключать генераторы и управлять ими, что в ATSах обычно не применяется, им это просто не нужно.

Часто АВРы имеют в своем составе автоматические защитные выключатели. Они могут быть включены на входах, могут быть на выходе или там, и там одновременно. Это позволяет избежать как повреждения самого АВРа, так и полного обесточивания нагрузки. При этом надежность схемы повышается наличием у АВРа нескольких выходов, защищенных отдельными автоматами.

У стоечных переключателей коммутация вводов и нагрузки обычно производится шнурами со стандартными вилками, что сводит к минимуму возможность рукотворного КЗ. Блоки питания подключаемого оборудования, как правило, имеют в своей схеме предохранители. Все это делает защиту автоматами не очень актуальной, в большинстве случаев производители ограничиваются «термичками». Помешают ли ATSу автоматы на входах или выходе? Да тоже вряд ли.

Защита входов термопредохранителями с ручным возвратом.

Защита входов термопредохранителями с ручным возвратом.

В отличие от ATS, которые оптимизированы для применения в современных шкафах с телекоммуникационным и вычислительным оборудованием, АВРы не всегда применяются на такую достаточно стандартную и понятную нагрузку. Нагрузка АВРа может быть весьма разнообразной по характеру. Возможен и емкостной, и индуктивный, и резистивный ее характер, а также их всевозможная смесь.

По этой причине характер переключения АВРа стараются сделать таким, чтобы не провоцировать при переключении серьезных толчков. Самое частое «мероприятие» в этом направлении — это достаточный перерыв в электроснабжении, в течение которого вся накопленная энергия в емкостях и сердечниках нагрузки расходуется. После возобновления питания вся нагрузка подключается к сети заново и возмущения находятся в приемлемых пределах.

Данный способ переключения к тому же не требует дополнительных технических решений и финансовых затрат, обеспечивается за счет низкой скорости работы контакторов. Полученный перерыв электроснабжения в пределах 500мс оказывается вполне достаточным. В более продвинутых АВРах включение резерва может происходить и за более короткое время, но в момент токовой паузы (перехода синусоиды через нулевую точку), это также обеспечивает более плавное переключение.

Переключение между вводами на осциллографе

Переключение между вводами на осциллографе

Более медленное переключение АВРа обеспечивает и еще один важный момент — гарантирует невозможность контакта одного ввода с другим, что чревато аварийными ситуациями. И вот в данном месте принципы работы АВРа и ATSа расходятся. Главной задачей ATSа является, как раз, обеспечить непрерывность работы подключенного к нему оборудования.

Специалисты хорошо знают о существовании объединения производителей компьютерной и другой подобной техники (CBEMA), которое решило, что нужно придерживаться правила — при полном исчезновении питания оборудование должно продолжать работать стабильно еще не менее 20мс, а далее… извините. В связи с этим про существование кривой ITIC знают все, кто так или иначе работает с серверами, коммутаторами, мультиплексорами и т.д. Вот поэтому у ATSа и стоит такая сложная задача: исключить перерыв питания оборудования длительностью более 20мс, а лучше и того менее.

А может можно и АВР заставить переключаться быстрее?

Да, конечно. Если от АВР не требуется искусственно снизить скорость переключения, то он вполне сможет переключиться со скоростью ATS. А можно ли ATS сделать более медленным переключателем? Легко! Замедлить быстрое всегда проще, чем разогнать медленное. Может эта принципиальная разница тоже не так уж принципиальна и разрешаема?

Читать статью  ITC ESCORT T-6220 | Группа компаний ESCORT

Есть ли еще какие-то различия между этими устройствами? Да есть. Но они больше связаны с привычками и предпочтениями пользователей. Энергетики и Айтишники часто по-разному понимают то, как должно выглядеть электроснабжение. Если энергетикам иногда хватает сигнальных ламп, то привыкшим к монитору хочется наблюдать за работой всего оборудования онлайн.

Разница может быть и в привычках коммутации. Многие уже привыкли к тому, что всё на свете можно соединить между собой стандартными шнурами с вилками C13/C14 на концах, без инструмента, без мороки, без маркировки АВРы не всегда обладают подобными возможностями и часто энергетики устанавливают после них еще и распределительные панели с автоматическими выключателями. Но опять же все это можно объединить в одной конструкции, главное ведь, что бы всем было привычно и удобно!

Итак, можно ли получить универсальный прибор, сочетающий в себе особенности и преимущества как АВР, так и ATS?

Получается, что в большинстве случаев можно. Хоть они и решают немного разные задачи, не так уж сильно друг от друга отличаются.

Стоечный быстродействующий АВР с регулировкой уставок и защитой автоматами

Стоечный быстродействующий АВР с регулировкой уставок и защитой автоматами

А зачем? Зачем такая унификация? Все, кто связан с обслуживанием оборудования? понимает преимущества применения унифицированного оборудования: меньше ЗИПа, проще обучить персонал, меньше производственных инструкций и они тоньше, легче проходит наработка опыта, регулярные закупки одного и того же оборудования обеспечивают лояльность поставщиков и экономию средств.

Недостатком такого унифицированного прибора можно считать большую, чем у «специализированных» собратьев, стоимость. Но в условиях рыночной экономики стоимость далеко не всегда пропорциональна сложности. Часто больше на нее влияют страна происхождения товара, количество посредников, ценовая политика производителя и (или) дистрибьютора, «богатство» потенциального потребителя и другие «рыночные» факторы.

Так что, желаю вам найти наиболее подходящее для ваших условий устройство. Наиболее полно удовлетворяющее запросам технических и коммерческих служб. А будет оно АВРом или ATSом, на самом деле, не так уж и важно!

3 схемы автоматического ввода резерва для дома. Ввод 1 — Ввод 2 — Генератор.

авр для двух вводов в дом и генератора

При сборке схемы автоматического ввода резерва можно выбрать три варианта. Два более простых и один посложнее.

Рассмотрим каждый из вариантов схемы поподробнее.

контактор с нормально разомкнутыми и замкнутыми контактами

Простейшая схема АВР для двух однофазных вводов собирается всего лишь на одном магнитном пускателе. Для этого понадобится контактор с двумя парами контактов:

  • нормально разомкнутым
  • нормально замкнутым

приставка накладка на контактор допконтакты

Если таковых в вашем контакторе не оказалось, можно использовать специальную приставку.

Только учтите, что контакты у большинства из них не рассчитаны на большие токи. А если вы решите подключать через АВР нагрузку всего дома, то уж точно не стоит этого делать, используя блок контакты расположенные по бокам стандартных пускателей.

Для этих целей лучше выбирать аппаратуру, изначально в своей конструкции имеющую именно силовые замкнутые и разомкнутые контакты. Подойдут такие марки как VS 463-33 или ESB-63-22, МК-103 от DeKraft, КМ ИЭК.



простая схема АВР на одном пускателе для дома

Вот самая простая схема АВР:

как работает АВР на одном пускателе

Катушка магнитного пускателя подключается на один из вводов. В нормальном режиме напряжение поступает на катушку, она замыкает контакт КМ1-1, а контакт КМ1-2 размыкается.

SF1 и SF2 в схеме – это однополюсные автоматические выключатели.

ввод резерва на одном контакторе

Напряжение через контактор поступает к потребителю. Дополнительно в схеме могут быть подключены сигнальные лампы. Они визуально будут показывать какой из вводов в данный момент подключен. Немного измененная схемка с лампочками:

схема ввода резерва на одном контакторе

Если напряжение на первом вводе исчезло, контактор отпадает. Его контакты КМ1-1 размыкаются, а КМ2-1 замыкаются. Напряжение начинает поступать к потребителю с ввода №2.

Если вам в нормальном режиме просто нужно проверить работоспособность схемы, то выключите автомат SF1 и смотрите как реагирует сборка. Все ли работает исправно.

дополнительные контакты для АВР пускателя

Самое главное здесь изначально проконтролировать на какой ток рассчитаны эти самые нормально замкнутые и разомкнутые контакты.

При этом обратите внимание, что эту простейшую схему можно собрать двумя способами:

  • без разрыва ноля
  • с разрывом нулевого провода

схема АВР для дома от генератора с разрывом нулевого провода

Без разрыва можно применять в том случае, если у вас есть две независимые линии эл.передач или кабельных ввода, от которых вы собственно и подключаете весь дом. А вот когда резервной линией является какой-то автономный источник энергии – ИБП или генератор, то здесь придется разрывать как фазу, так и ноль.

Так как основная сеть в 90% случаев выполнена с глухозаземленной нейтралью, а от генератора или ИБП идет с изолированной. Здесь объединять нулевой рабочий проводник от сети, с нулем от генератора нельзя.

111-3xfaz

Естественно, что все контакторы подключаются после счетчика kWh. QF – это модульные автоматы в щитке дома.

схема АВР с кнопкой запуска генератора

Если у вас второй источник питания подает напряжение не автоматически, например бензиновый генератор без пусковой аппаратуры. Который нужно сначала вручную завести, прогреть и только потом переключиться, то схемку можно немного изменить, добавив туда одну единственную кнопку.

алюминиевая проводка в квартире и дома новые правила

За счет нее не будет происходить автоматического переключения. Вы сами выберите для этого нужный момент, нажав ее когда потребуется. Монтируется эта кнопка SB1 параллельно катушке контактора.

приставка к контактору ПВИ-12 для задержки времени

Когда у вас напряжение на основном вводе не исчезает на долго, а периодически пропадает и появляется (причины могут быть разными), в этом случае не желательны постоянные переключения контакторов туда-обратно. Здесь целесообразно использовать специальную приставку к контактору типа ПВИ-12 с задержкой времени.

трехфазная схема АВР для дома на одном пускателе

Трехфазная схема практически аналогична однофазной.

Только особо следите за правильной фазировкой АВС. Она должна совпадать на вводе-1 с вводом-2. Иначе 3-х фазные двигатели после переключения будут крутиться в обратную сторону.

схема АВР трехфазная на двух пускателях

Вторая схема немного посложнее. В ней используется уже два магнитных пускателя.

Допустим, у вас есть два трехфазных ввода и один потребитель. В схеме применены магнитные пускатели с 4-мя контактами:

  • 3 нормально разомкнутые
  • 1 нормально замкнутый КМ1

подключение СИП к автомату

Катушка пускателя КМ1 подключается через фазу L3 от первого ввода и через нормально замкнутый контакт КМ2. Таким образом, когда вы подаете питание на ввод №1, катушка первого пускателя замыкается и вся нагрузка подключается к источнику напряжения №1.

что означают сокращения в названии пускателей

Второй контактор при этом отключен, так как нормально замкнутый разъем КМ1, будет в этот момент размокнут, и питание на катушку второго пускателя поступать не будет. При исчезновении напряжения на первом вводе, отпадает контактор-1 и включается контактор-2. Потребитель остается со светом.

Самый главный плюс этих схем – их простота. А минусом является то, что подобные сборки называть схемами автоматизации можно с очень большой натяжкой.

Стоит лишь исчезнуть напряжению на той фазе, которая питает катушку включения и вы легко можете получить встречное КЗ.

схема подключения АВР на одном пускателе 380В

Можно конечно усовершенствовать всю систему, выбрав катушку контактора не на 220В, а на 380В. В этом случае будет осуществлен контроль уже по двум фазам.

Но на 100% вы все равно себя не обезопасите. А если учесть момент возможного залипания контактов, то тем более.

Кроме того, вы никак не будете защищены от слишком низкого напряжения. Пускатель №1 может отключиться, только если U на входе будет ниже 110В. Во всех остальных случаях, ваше оборудование будет продолжать получать не качественную электроэнергию, хотя казалось бы, рядом и есть второй исправный ввод.

Чтобы повысить надежность, придется усложнять схему и включать в нее дополнительные элементы:

  • реле напряжения
  • реле контроля фаз и т.п.

схема АВР запуска от генератора

Поэтому в последнее время, для сборки схем АВР, все чаще стали применяться специальные реле или контроллеры — ”мозги” всего устройства. Они могут быть разных производителей и выполнять функцию не только включения резервного питания от одного источника.

Вдруг перед вами стоит более сложная задача. Например, нужно чтобы схема управляла сразу двумя вводами и вдобавок еще генератором. Причем генератор должен запускаться автоматически.

Алгоритм работы здесь следующий:

1.При неисправном вводе №1 происходит автоматическое переключение на ввод №2.
2.При отсутствии напряжения на обоих вводах осуществляется запуск генератора и переключение всей нагрузки на него.

AVR-02 фиф автоматика и его схема

Как и на чем реализовать подобный ввод резерва? Здесь можно применить схему АВР на базе AVR-02 от компании ФиФ Евроавтоматика.

На сегодняшний день, стоимость таких устройств сопоставима с ценой хорошего корпуса эл.шкафа от ABB. Но там вы получите пустую железную коробку, а здесь умные мозги, которые будут управлять и защищать всю ваше домашнюю электросеть.

В принципе есть смысл один раз потратиться и защитить себя и свое оборудование раз и навсегда.

Данное устройство является многофункциональным и с помощью него можно построить 8 разных схем АВР. Чаще всего применяются три из них:

Источник http://electromaster.pro/avtomaticheskij-vvod-rezerva.php

Источник https://habr.com/ru/post/586678/

Источник https://domikelectrica.ru/3-sxemy-avtomaticheskogo-vvoda-rezerva-dlya-doma/

Добавить комментарий

Ваш адрес email не будет опубликован.