Генератор для велосипеда из шагового двигателя | Сделай сам своими руками

 

Маломощный ветрогенератор из шагового двигателя: самодельное устройство из принтера

Создание ветрогенератора не обязательно означает изготовление крупного и мощного комплекса, способного обеспечивать электроэнергией целый дом или группу потребителей. Можно изготовить небольшой ветряк, представляющий собой, по сути, действующую модель серьезной установки. Целью такого мероприятия может быть:

  • Ознакомление с основами ветроэнергетики.
  • Совместные обучающие занятия с детьми.
  • Экспериментальный образец, предваряющий строительство крупной установки.

Создание такого ветряка не потребует использования большого количества материалов или инструментов, можно обойтись подручными средствами. Рассчитывать на выработку серьезных объемов энергии не приходится, но для питания небольшого светильника на светодиодах может хватить. Основная проблема, существующая при создании небольших ветряков — это генератор. Его сложно создать самостоятельно, поскольку размеры устройства невелики. Проще всего использовать небольшой электродвигатель, позволяющий использовать его в режиме генератора.

Маломощный ветрогенератор из шагового двигателя: самодельное устройство из принтера

Самодельный ветряк на основе шагового двигателя

Чаще всего, при изготовлении маломощных ветрогенераторов используют шаговые электродвигатели. Особенность их конструкции состоит в наличии нескольких обмоток. Обычно, в зависимости от размера и назначения, изготавливают двигатели с 2, 4 или 8 обмотками (фазами). При подаче напряжения на них по очереди вал соответственно поворачивается на определенный угол (шаг).

Преимущество шаговых двигателей заключается в способности производить достаточно большой ток при низких скоростях вращения. На генератор из шагового двигателя можно установить крыльчатку без всяких промежуточных устройств — передач, редукторов и т.п. Выработка электроэнергии будет производиться с такой же эффективностью, как и на устройствах другой конструкции с использование повышающих передач.

Разница в скоростях весьма существенная — для получения такого же результата, например, на коллекторном двигателе, потребуется скорость вращения в 10 или 15 раз больше.

Считается, что с помощью генератора из шагового двигателя можно заряжать аккумуляторы или батареи мобильных телефонов, но на практике положительные результаты отмечаются крайне редко. В основном, получаются источники питания для небольших светильников.

К недостаткам шаговых двигателей можно отнести значительное усилие, необходимое для начала вращения. Это обстоятельство снижает чувствительность всей ветроустановки к слабым ветрам, что можно несколько скорректировать путем увеличения площади и размаха лопастей.

Отыскать такие двигатели можно в старых дисководах для гибких носителей, в сканерах или принтерах. Как вариант, можно приобрести новый двигатель, если в запасе нужного устройства не окажется. Для большего эффекта следует выбирать более крупные двигатели, они способны выдавать достаточно большое напряжение, чтобы его можно было как-то использовать.

Ветрогенератор из деталей от принтера

Один из подходящих вариантов — использование шагового двигателя от принтера. Его можно извлечь из вышедшего из строя старого устройства, в каждом принтере как минимум два таких двигателя. Как вариант, можно приобрести новый, не бывший в эксплуатации. Он способен вырабатывать мощность около 3 ватт даже при слабом ветре, типичном для большинства регионов России. Напряжение, которое может быть достигнуто, составляет 12 и более В, что позволяет рассматривать устройство как возможность зарядки аккумуляторов.

Шаговый двигатель выдает переменное напряжение. Для пользователя необходимо прежде всего выпрямить его. Потребуется создать диодный выпрямитель, для чего потребуется по 2 диода на каждую катушку. Можно и напрямую подключить светодиод к выводам катушки, при достаточной скорости вращения этого хватит.

Крыльчатку ротора проще всего установить прямо на вал двигателя. Для этого надо изготовить центральную часть, способную плотно усаживаться на вал. Доя усиления фиксации крыльчатки необходимо просверлить отверстие и нарезать в нем резьбу. Впоследствии в него буде завинчиваться стопорный винт.

Для изготовления лопастей обычно используют полипропиленовые канализационные трубы или иные подходящие материалы. Главным условием является малый вес и достаточная прочность, поскольку лопасти иногда набирают вполне приличную скорость. Использование ненадежных материалов может создать нежелательную ситуацию, когда крыльчатка разваливается на ходу.

Обычно изготавливают по 2 лопасти, но можно сделать и большее количество. Необходимо помнить, что большая площадь лопастей повышает КИЭВ ветряка, но параллельно с этим увеличивается фронтальная нагрузка на крыльчатку, передающаяся валу двигателя. Изготовление маленьких лопастей также не рекомендуется, поскольку они не смогут преодолеть залипание вала при старте вращения.

Для возможности вращения ветряка вокруг вертикальной оси надо сделать специальный узел. Сложность в этом заключается в необходимости обеспечить неподвижность кабеля, идущего от генератора. Поскольку устройство имеет, скорее, декоративное назначение, обычно подходят к вопросу проще — устанавливают потребитель прямо на корпусе генератора, исключая присутствие длинного кабеля. В противном случае придется монтировать систему наподобие щеточного коллектора, что нерационально и требует большого количества времени.

Читать статью  Как сделать флюгер (ветряк) своими руками | Советы

Мачта

Собранный ветряк необходимо установить на мачту высотой как минимум 3 метра. Потоки ветра у поверхности земли имеют нестабильное направление, вызванное турбулентностью. Подъем на некоторую высоту поможет получить более равномерные потоки. Для самостоятельной установки на ветер по оси вращения устанавливают хвостовой стабилизатор, играющий роль флюгера. Он делается из любого куска пластмассы, алюминиевой пластинки или иного подручного материала.

Генератор для велосипеда из шагового двигателя

Шаговый двигатель это не только мотор приводящий в действие всевозможный устройства (принтер, сканер и т.п), но и неплохой генератор ! Основным достоинством такого генератора является то, что ему не нужны большие обороты. Иными словами, даже при небольших оборотах шаговый двигатель вырабатывает достаточно много энергии. То есть обычному велосипедному генератору требуются начальные обороты до того пока фонарь не начнет светить ярким светом. Этот недостаток пропадает при использовании шагового двигателя.

В свою очередь шаговый двигатель обладает и рядом недостатков. Основным из них является большое магнитное залипание.

Ну да ладно. Для начала нам необходимо найти шаговый двигатель. Тут работает правило: Чем двигатель больше — тем лучше.

Начнем с самого большого. Я выдрал его из плоттера для печати, это такой большой принтер. На вид двигатель выглядит довольно большим.

Перед тем как показать вам схему стабилизации и питания я хочу показать Вам метод крепления на Ваш велобайк.

Как видно из рисунка наш генератор прикручен ближе к оси колеса и вращается от дополнительного круга. Здесь нужна мысль и смекалка каждому из вас нужно самому придумать крепление и круг вращения, так как вариантов очень много.

Ну а теперь время пришло поговорить о фонарях и цепях питания. Естественно все фонари — светодиодные.

Схема выпрямления обычная : блок выпрямительных диодов, пару конденсаторов большой ёмкости и стабилизатор напряжения.

Обычно из шагового двигателя выходит 4 проводе, соответствующие двум катушкам. Поэтому на рисунке два выпрямительных блока.

Наш генератор способен вырабатывать до 50 вольт напряжения на больших оборотах, поэтому конденсаторы надо брать на напряжение не ниже 50.

Чем же хороша наша самоделка?! — Дело в том что даже при трогании с места наш фонарь ярко светит! И в процессе движения не мелькает и не тухнет.

Мой самодельный ветрогенератор на шаговом двигателе

Проезжая на велосипеде мимо дачных участков, я увидел работающий ветрогенератор:

Большие лопасти медленно, но верно вращались, флюгер ориентировал устройство по направлению ветра.
Мне захотелось реализовать подобную конструкцию, пусть и не способную вырабатывать мощность, достаточную для обеспечения «серьезных» потребителей, но все-таки работающую и, например, заряжающую аккумуляторы или питающую светодиоды.

Шаговые двигатели

Одним из наиболее эффективных вариантов небольшого самодельного ветроэлектрогенератора является использование шагового двигателя (ШД) (англ. stepping (stepper, step) motor) — в таком моторе вращение вала состоит из небольших шагов. Обмотки шагового двигателя объединены в фазы. При подаче тока в одну из фаз происходит перемещение вала на один шаг.
Эти двигатели являются низкооборотными и генератор с таким двигателем может быть без редуктора подключен к ветряной турбине, двигателю Стирлинга или другому низкооборотному источнику мощности. При использовании в качестве генератора обычного (коллекторного) двигателя постоянного тока для достижения таких же результатов потребовалась бы в 10-15 раз более высокая частота вращения.
Особенностью шаговика является достаточно высокий момент трогания (даже без подключенной к генератору электрической нагрузки), достигающий 40 грамм силы на сантиметр.
Коэффициент полезного действия генератора с ШД достигает 40 %.

Для проверки работоспособности шагового двигателя можно подключить, например, красный светодиод. Вращая вал двигателя, можно наблюдать свечение светодиода. Полярность подключения светодиода не имеет значения, так как двигатель вырабатывает переменный ток.

Кладезем таких достаточно мощных двигателей являются пятидюймовые дисководы гибких дисков, а также старые принтеры и сканеры.

шаговый двигатель с шестью выводами

Например, я располагаю ШД из старого 5.25″ дисковода, работавшего еще в составе ZX Spectrum — совместимого компьютера «Байт».
Такой дисковод содержит две обмотки, от концов и середины которых сделаны выводы — итого из двигателя выведено шесть проводов:

первая обмотка (англ. coil 1) — синий (англ. blue) и желтый (англ. yellow);
вторая обмотка (англ. coil 2) — красный (англ. red) и белый (англ. white);
коричневые (англ. brown) провода — выводы от средних точек каждой обмотки (англ. center taps).

Читать статью  Как правильно пишется слово ЭНЕРГОСБЕРЕЖЕНИЕ. Правописание слова ЭНЕРГОСБЕРЕЖЕНИЕ

разобранный шаговый двигатель

разобранный шаговый мотор

Слева виден ротор двигателя, на котором видны «полосатые» магнитные полюсы — северный и южный. Правее видна обмотка статора, состоящая из восьми катушек.
Сопротивление половины обмотки составляет ~ 70 Ом.

Я использовал этот двигатель в первоначальной конструкции моего ветрогенератора.

шаговый мотор с пятью выводами

Находящийся в моем распоряжении менее мощный шаговый двигатель T1319635 фирмы Epoch Electronics Corp. из сканера HP Scanjet 2400 имеет пять выводов (униполярный мотор):

первая обмотка (англ. coil 1) — оранжевый (англ. orange) и черный (англ. black);
вторая обмотка (англ. coil 2) — коричневый (англ. brown) и желтый (англ. yellow);
красный (англ. red) провод — соединенные вместе выводы от средней точки каждой обмотки (англ. center taps).

Сопротивление половины обмотки составляет 58 Ом, которое указано на корпусе двигателя.

шаговый двигатель

В улучшенном варианте ветрогенератора я использовал шаговый двигатель Robotron SPA 42/100-558, произведенный в ГДР и рассчитанный на напряжение 12 В:

Ветротурбина

Возможны два варианта расположения оси крыльчатки (турбины) ветрогенератора — горизонтальное и вертикальное.

Преимуществом горизонтального (наиболее популярного) расположения оси, располагающейся по направлению ветра, является более эффективное использование энергии ветра, недостаток — усложнение конструкции.

Я выбрал вертикальное расположение оси — VAWT (vertical axis wind turbine), что существенно упрощает конструкцию и не требует ориентации по ветру. Такой вариант более пригоден для монтирования на крышу, он намного эффективнее в условиях быстрого и частого изменения направления ветра.

Сигурд Йоханнес Савониус (Sigurd Johannes Savonius)

Я использовал тип ветротурбины, называемый ветротурбина Савониуса (англ. Savonius wind turbine). Она была изобретена в 1922 году Сигурдом Йоханнесом Савониусом (Sigurd Johannes Savonius) из Финляндии.

Сигурд Йоханнес Савониус

Работа ветротурбины Савониуса основана на том, что сопротивление (англ. drag) набегающему потоку воздуха — ветру вогнутой поверхности цилиндра (лопасти) больше, чем выпуклой.

коэффициенты аэродинамического сопротивления

Коэффициенты аэродинамического сопротивления (англ. drag coefficients) $C_D$

двумерные тела:

вогнутая половина цилиндра (1) — 2,30
выпуклая половина цилиндра (2) — 1,20
плоская квадратная пластина — 1,17
трехмерные тела:
вогнутая полая полусфера (3) — 1,42
выпуклая полая полусфера (4) — 0,38
сфера — 0,5
Указанные значения приведены для чисел Рейнольдса (англ. Reynolds numbers) в диапазоне $10^4 — 10^6$. Число Рейнольдса характеризует поведение тела в среде.

Сила сопротивления тела воздушному потоку $ = S rho > $, где $rho$ — плотность воздуха, $v$ — скорость воздушного потока, $S$ — площадь сечения тела.

ветротурбина Савониуса

Такая ветротурбина вращается в одну и ту же сторону, независимо от направления ветра:

чашечный анемометр

Подобный принцип работы используется в чашечном анемометре (англ. cup anemometer) — приборе для измерения скорости ветра:

 Джон Томас Ромни Робинсон

Такой анемометр был изобретен в 1846 году ирландским астрономом Джоном Томасом Ромни Робинсоном (John Thomas Romney Robinson):

Робинсон полагал, что чашки в его четырехчашечном анемометре перемещаются со скоростью, равной одной трети скорости ветра. В реальности это значение колеблется от двух до немногим более трех.

трехчашечный анемометр

В настоящее время для измерения скорости ветра используются трехчашечные анемометры, разработанные канадским метеорологом Джоном Паттерсоном (John Patterson) в 1926 году:

ветрогенератор на микродвигателе

Генераторы на коллекторных двигателях постоянного тока с вертикальной микротурбиной продаются на eBay по цене около $5:

Такая турбина содержит четыре лопасти, расположенные вдоль двух перпендикулярных осей, с диаметром крыльчатки 100 мм, высотой лопасти 60 мм, длиной хорды 30 мм и высотой сегмента 11 мм. Крыльчатка насажена на вал коллекторного микродвигателя постоянного тока с маркировкой JQ24-125H670. Номинальное напряжение питания такого двигателя составляет 3 . 12 В.
Энергии, вырабатываемой таким генератором, хватает для свечения «белого» светодиода.

Скорость вращения ветротурбины Савониуса не может превышать скорость ветра, но при этом такая конструкция характеризуется высоким крутящим моментом (англ. torque).

Эффективность ветротурбины можно оценить, сравнив вырабатываемую ветрогенератором мощность с мощностью, заключенной в ветре, обдувающем турбину:
$P = <1over 2>rho S $ , где $rho$ — плотность воздуха (около 1,225 кг/м 3 на уровне моря), $S$ — ометаемая площадь турбины (англ. swept area), $v$ — скорость ветра.

ветрогенератор

Первоначально в крыльчатке моего генератора использованы четыре лопасти в виде сегментов (половинок) цилиндров, вырезанных из пластиковых труб:

Размеры сегментов —
длина сегмента — 14 см;
высота сегмента — 2 см;
длина хорды сегмента — 4 см;
расстояние от начала сегмента до центра оси вращения — 3 см.

Читать статью  Профессия Энергоаудитор: где учиться, зарплата, плюсы и минусы

ветрогенератор на мачте

Я установил собранную конструкцию на достаточно высокой (6 м 70 см) деревянной мачте из бруса, прикрепленную саморезами к металлическому каркасу:

самодельный ветрогенератор

Недостатком генератора была достаточно высокая скорость ветра, требуемая для раскрутки лопастей. Для увеличения площади поверхности я использовал лопасти, вырезанные из пластиковых бутылок:

Размеры сегментов —
длина сегмента — 18 см;
высота сегмента — 5 см;
длина хорды сегмента — 7 см;
расстояние от начала сегмента до центра оси вращения — 3 см.

Проблемой оказалась прочность держателей лопастей. Сначала я использовал перфорированные алюминиевые планки от советского детского конструктора толщиной 1 мм. Через несколько суток эксплуатации сильные порывы ветра привели к излому планок (1). После этой неудачи я решил вырезать держатели лопастей из фольгированного текстолита (2) толщиной 1,8 мм:

Прочность текстолита на изгиб перпендикулярно пластине составляет 204 МПа и сравним с прочностью на изгиб алюминия — 275 МПа. Но модуль упругости алюминия $E$ (70000 МПа) намного больше, чем у текстолита (10000 МПа), т.е. тексолит намного эластичнее алюминия. Это, по моему мнению, с учетом большей толщины текстолитовых держателей, обеспечит гораздо большую надежность крепления лопастей ветрогенератора.
Ветрогенератор смонтирован на мачте:

Опытная эксплуатация нового варианта ветрогенератора показала его надежность даже при сильных порывах ветра.

Жорж Дарье (Georges Jean Marie Darrieus)

Недостатком турбины Савониуса является невысокая эффективность — только около 15 % энергии ветра преобразуется в энергию вращения вала (это намного меньше, чем может быть достигнуто с ветротурбиной Дарье (англ. Darrieus wind turbine)), использующей подъемную силу (англ. lift). Этот вид ветротурбины был изобретен французским авиаконструктором Жоржем Дарье (Georges Jean Marie Darrieus) — патент США от 1931 года № 1,835,018.

Жорж Дарье

ветротурбина Дарье

Недостатком турбины Дарье является то, что у нее очень плохой самозапуск (для выработки крутящего момента от ветра турбины уже должна быть раскручена).

Преобразование электроэнергии, вырабатываемой шаговым двигателем

Выводы шагового двигателя могут быть подключены к двум мостовым выпрямителям, собранным из диодов Шоттки для снижения падения напряжения на диодах.
Можно применить популярные диоды Шоттки 1N5817 с максимальным обратным напряжением 20 В, 1N5819 — 40 В и максимальным прямым средним выпрямленным током 1 А. Я соединил выходы выпрямителей последовательно с целью увеличения выходного напряжения.
Также можно использовать два выпрямителя со средней точкой. Такой выпрямитель требует в два раза меньше диодов, но при этом и выходное напряжение снижается в два раза.
Затем пульсирующее напряжение сглаживается с помощью емкостного фильтра — конденсатора 1000 мкФ на 25 В. Для защиты от повышенного генерируемого напряжения параллельно конденсатору включен стабилитрон на 25 В.

схема моего ветрогенератора

электронный блок моего ветрогенератора

Применение ветрогенератора

Вырабатываемое ветрогенератором напряжение зависит от величины и постоянства скорости ветра.

При ветре, колышущем тонкие ветви деревьев, напряжение достигает 2 . 3 В.

При ветре, колышущем толстые ветви деревьев, напряжение достигает 4 . 5 В (при сильных порывах — до 7 В).

ПОДКЛЮЧЕНИЕ К JOULE THIEF

Joule Thief (pnp)

Сглаженное напряжение с конденсатора ветрогенератора может подаваться на Joule Thief — низковольтный DC-DC преобразователь

Joule Thief

Значение сопротивления резистора R подбирается экспериментально (в зависимости от типа транзистора) — целесообразно использовать переменный резистор на 4,7 кОм и постепенно уменьшать его сопротивление, добиваясь стабильной работы преобразователя.
Я собрал такой преобразователь на базе германиевого pnp-транзистора ГТ308В (VT) и импульсного трансформатора МИТ-4В (катушка L1 — выводы 2-3, L2 — выводы 5-6) :

ЗАРЯД ИОНИСТОРОВ (СУПЕРКОНДЕНСАТОРОВ)

5R5D11F22H

Ионистор (суперконденсатор, англ. supercapacitor) представляет собой гибрид конденсатора и химического источника тока.
Ионистор — неполярный элемент, но один из выводов может быть помечен «стрелкой» — для обозначения полярности остаточного напряжения после его зарядки на заводе-изготовителе.
Для первоначальных исследований я использовал ионистор 5R5D11F22H емкостью 0,22 Ф на напряжение 5,5 В (диаметр 11,5 мм, высота 3,5 мм):

Я подключил его через диод к выходу Joule Thief через германиевый диод Д310.

заряд ионистора

Для ограничения максимального напряжения зарядки ионистора можно использовать стабилитрон или цепочку светодиодов — я использую цепочку из двух красных светодиодов:

Для предотвращения разряда уже заряженного ионистора через ограничительные светодиоды HL1 и HL2 я добавил еще один диод — VD2.

Источник https://energo.house/veter/vetrogenerator-iz-shagovogo-dvigatelya.html

Источник https://sdelaysam-svoimirukami.ru/322-generator_dlja_velosipeda_iz_shagovogo_dvigatelja.html

Источник https://acdc.foxylab.com/windgen

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *