Генератор для ветряка из асинхронного двигателя

Содержание

Ветряная электростанция на базе асинхронного двигателя

Вопрос о ветровых электрогенераторах в наше время, очень актуален. Многие европейские производители предлагают ветровые генераторы разной мощности, но стоят они не дешево. А вся система, включая ветровой электрогенератор, инвертор преобразования постоянного тока в переменный и аккумуляторные батареи, это очень дорогое удовольствие, которое вряд ли окупит себя, в ближайшее время использования. Такие ветровые установки не может себе позволить обычный потребитель электрической энергии.

Из всего сказанного, можно сделать вывод, что наиболее остро стоит вопрос об удешевлении получении электроэнергии из ветра.

При применении генераторов на постоянных магнитах, можно получить не очень большое напряжение, как правило, оно не превышает 10 В. Да и к тому же скорость ветра, это не постоянная величина. Установки на таких генераторах должны всегда снабжаться аккумуляторными батареями, и инвертором. Но исходя из того, наиболее оптимальные аккумуляторные батареи, это батареи 150 А/ч, то вряд ли кто захочет связываться с таким дорогим проектом (для примера аккумуляторная батарея танка ПТ-76 весит 65кг, и рассчитана на 140А/ч).

В роли генератора использовались и автомобильные генераторы и синхронные двигатели. Но в обеих вариантах один и тот же недостаток нужны слишком большие обороты ротора двигателя, а это в свою очередь приводит к увеличению передаточного числа редуктора, а значит и габаритов ветряного крыла. Так же можно добавить и нестабильность частоты работы и сложность стабилизации выходного напряжения, а в случае синхронного двигателя еще и больше габариты и масса. Для стабилизации выходного напряжение, можно использовать аккумуляторные батареи и инвертор, но это приведет к той схеме, которая сейчас используется европейскими производителями, о которой здесь не будет идти речи, потому что она очень дорогая.

В ходе долгих поисков и экспериментов, предпочтение было отдано генератору на базе асинхронного двигателя с короткозамкнутым ротором. При использовании данной схемы было выявлено много достоинств и всего один недостаток.

Достоинства: небольшие габариты и масса при достаточно большой мощности; нет необходимости в напряжении возбуждения; если использовать тихооборотный двигатель, то и мощность ротора можно уменьшить; выходная частота практически не зависит от скорости вращения ротора.

Недостаток: данный генератор нельзя перегружать.

Принципиальная схема

Схема включения асинхронного двигателя с кроткозамкнутым ротором показана на рисунке №1. При вращении ротора двигателя остаточное магнитное поле действует на одну из обмоток статора. При этом возникает небольшое электрический ток, который заряжает один из конденсаторов С1-С3. Благодаря тому, что фаза напряжения на конденсаторе отстает на, на роторе возникает магнитное поле уже большей величины, которое действует на следующую обмотку. Соответственно следующий конденсатор зарядится на большее напряжение. Этот процесс продолжается до тех пор, пока ротор генератора не войдет в насыщение (1…1,15с) После этого можно включать автомат В2 и использовать вырабатываемую генератором энергию.

Схема подключения асинхронного двигателя для работы в качестве генератора электроэнергии

Рис. 1. Схема подключения асинхронного двигателя для работы в качестве генератора электроэнергии.

Причем для нормальной работы двигателя в режиме генератора мощность нагрузки должна составлять не более 80 % примененного в качестве генератора двигателя. Остальные 20 % используются для поддержания напряжения на конденсаторах, т.е. поддержание генератора в рабочем состоянии.

При превышении данного условия напряжение на конденсаторах исчезнет, а значит и исчезнет магнитное поле на якоре, что приведет к исчезновению напряжения на клеммах автомата В2. Причем это происходит практически мгновенно.

В этом есть свой недостаток и свои достоинства. Недостаток является в том, что повторная подача напряжения возможна только тогда, когда будет устранена причина перегрузки и отключен автомат В2. Генератор сонно войдет в рабочий режим (через 1…1,5с).

После этого можно включать В2 и использовать энергию. К достоинству относят тот фактор, что генератор практически невозможно сжечь, так как напряжение на его клеммах исчезает мгновенно в течение 0,1…0,5с.

Выходное напряжение имеет синусоидальную форму и полностью пригодно для дальнейшего использования. Выходная частота генератора 46…60 Гц, что в большинстве случаев достаточно для домашнего использования. Из-за нестабильности напряжения на выходе напряжения необходимо установить стабилизатор (описание схемы и работы описано в дополнительной статье).

Движущая сила

Рис. 3. Движущая сила.

Емкость добавочных конденсаторов указанна в таблице №1, на один киловатт указанной мощности мотора, а для работы с нагрузкой – добавочная емкость на каждый киловатт нагрузки.

Таблица №1 Емкость конденсаторов, включаемых в фазы, в микрофарадах на 1 кВт мощности.

Напряжение между фазами Основная емкость (мкФ)
При холостом ходе При активной нагрузке При реактивной нагрузке
127 В 40. 50 10…20 50..60
220 В 12..15 3..6 1…2
380 В 4..5 1..2 5..6

К примеру, есть двигатель мощность 3 кВт. К нему предполагается подключить реактивную нагрузку (электродвигатель, сварочный аппарат), суммарной мощностью примерно 2 кВт.

При этом мы хотим, что бы напряжение между фазами было 380. Значит, емкость конденсатора С1 составит (3*5)+ (2*6) микрофарад. Так как С1=С2=С3, то нам понадобится три конденсатора емкостью 30 мкФ.

Если конденсаторов необходимой емкости нет, то можно соединить конденсаторы параллельно, меньшей емкости. Конденсаторы должны быть бумажные или метолобумажные на напряжение не ниже 450 В, а лучше на 650 В. Лучше включать генератор на напряжение между фазами 220 В, а между нулем и фазой 127 В. Это вызвано тем, что для нормальной работы генератора перекос фаз не должен превышать. При такой схеме, удастся максимально разгрузит генератор. Кроме того, питание осветительных ламп накаливания и некоторые нагревательные приборы лучше питать постоянным током.

Читать статью  Как соорудить лопасти для ветрогенератора своими руками: примеры самостоятельного изготовления лопастей для ветряка

Для генератора необходимо использовать тихооборотный двигатель двигатель с короткозамкнутым ротором. Лучше всего применить двигатель на 360…720 об/мин, но подойдет и двигатель на 910 об/мин. Это вызвано необходимостью вращать ротор с большей примерно в два раза скоростью, чем указанно в паспорте на двигатель, и уменьшением числа передачи редуктора.

Конструкция

Сама ветрогенераторная установка может быть выполнена в любой удобной для вас схеме. Здесь же предлагается следующая конструкция. Принцип работы показан на рисунке №3 и в объяснении не нуждается. Ветродвигатель (рисунок №4)состоит из ветряного крыла 1,опоры 2 и собственно генератора 3. Опора жестко забетонирована и укреплена тремя натяжными тросами 4.

Конструкция ветроэлектрогенератора

Рис. 4. Конструкция ветроэлектрогенератора.

Опору можно изготовить из дерева, бетона, метала. Можно применить опору которую используют для передачи электричества на расстояние, или свою. В качестве растяжек лучше использовать стальной трос диаметром 10..12 мм. Костыли, за которые крепятся растяжки, необходимо хорошо забетонировать. Каркас крыльев ветродвигатель можно изготовить из труб диаметром 1 дюйм, его чертеж показан на рисунке №5.

Элероны можно изготовить из стального прутка диаметром 6мм. В качестве ведущего вола использовано толстостенная труба диаметром 2..2,5 дюйма, в нижний конец которой впрессован вал длинной 300…400мм. В нижнем конце вала сделана канавка под шкив. Подшипники взяты сферические с конусными зажимами марки 2000810 с соответствующим корпусом.

После сборки крыло необходимо сбалансировать. К опоре сбалансированное крыло крепиться любым удобным способом, но, главное, что бы крепление было достаточно жестким и надежным. Экспериментально было установлено, что лучшим материалом для обтягивания крыла служит полиэтиленовая пленка толщиной 80…120мкм.

Она достаточно прочная, легка я дешевая позволяет отказаться от тормозного механизма, который, кстати, в данном случае неприемлем, так как при сильном ветре крыло будет уничтожено. Обтягивать полиэтиленовой пленкой нужно в несколько слоев спаивая по швам, паяльником через кусок полиэтиленовой пленки. Спаянный шов должен быть равным и прочным.

Для привода вала генератора применен редуктор. Можно использовать редуктор любой системы, кроме червячной. Как было уже сказано, вал генератора нужно вращать примерно с удвоенной скоростью, а вол ветродвигателя вращается со скоростью 500 об/мин при скорости ветра 5 м/с, Отсюда и ограничение на использование двигателя в качестве генератора. Наилучшим вариантом может быть двигатель на 360 об/мин, но можно и применить и двигатель на 720 об/мин.

При использовании двигателя можно увеличить высоту крыла на 500 мм. Увеличивать крыло по ширине не рекомендуется , так как при этом уменьшается частота вращения, уменьшать то же не следует, так как при увеличении скорости вращения сильно уменьшиться мощность, причем закон уменьшения не линейный.

Чертеж лопастей ветрогенератора

Рис. 5. Чертеж лопастей ветрогенератора.

При подборе редуктора нужно руководствоваться следующим правилам: за номинальные обороты крыло ветродвигателя нужно брать величину 500 об/мин, что соответствует скорости ветра 5 м/с, частота вращения вала двигателя увеличивается на 2,3, далее путем несложных подсчетов получаем коэффициент передачи. Сам кронштейн легко прикрепить к опоре с помощью шести шпилек.

Зубчатым редуктором крепление намного проще. Не рекомендуется делать вал ветродвигателя слишком длинным, так как его может попросту перекрутить. Всю конструкцию необходимо заземлить.

Сопротивление заземление должно быть не более 2 Ом. У подножия необходимо поставить шкаф, в котором необходимо разместить конденсаторы С1-С3, автоматы В1-В2, диоды V1-V6, стабилизатор напряжения, автомат управления, четыре аккумулятора и мощный преобразователь напряжения для обеспечение энергией во время штилей. Автомат управления обеспечивает переключение цепей питания в зависимости от нагрузки и скорости ветра.

Мощный преобразователь напряжения обеспечивает заряд аккумулятора во время работы генератора в холостом ходу а также питание сети от аккумуляторов при отсутствии ветра или сильно заниженном напряжении на генераторе. Когда нет напряжения а аккумулятора разряжены, автомат управления обеспечивает подачу энергии из штатной сети.

Кабель которым производится подключение генератора и силового шкафа, должен быть трехфазным с сечением жилы не более, Кабеля, которыми производится соединение шкафа с потребителями могут быть такими же. Шина заземления должна быть сечением не менее.

Внимание! Все работы по монтажу нужно производить при отключенном автомате В1 и разряженных конденсаторах С1-С3.

Данные для переделки асинхронника в генератор

немного вводной информации по переделке асинхронных двигателей в генератор
Переделка асинхронного двигателя довольно популярный метод изготовления генератора для ветрогенератора. Асинхронные двигатели с малым количеством полюсов рассчитаны на высокие обороты, к примеру двух-полюсные на 3000 об/м, но для ветрогенераторов нужны низкие обороты, по этому нужно выбирать самые низко-оборотистые двигатели. Сейчас в доступности самые низко-оборотистые на 750 и 1000 об/м, соответственно на 8 и 6 полюсов.

Двигатели на 2-4 полюса приходится перематывать чтобы сделать больше количество полюсов, это достаточно сложно и затратно, а двигатели на 6-8 полюсов можно не перематывать и использовать как есть. Вся переделка двигателя в генератор заключается в переделке ротора на неодимовые магниты. Делается это достаточно просто, родной ротор просто протачивается на толщину магнитов (к примеру 5 мм), далее ротор делится на количество полюсов (к примеру 8) и на полюса наклеиваются магниты.

Магниты подбираются небольших размеров и из них набираются полюса. К примеру двигатель АИР112MB8 3 кВт имеет ротор диаметром 131 мм, а длинна 130 мм. Значит длинна окружности ротора (130 мм*3,14=408,2 мм), но мы протачиваем ротор на 5 мм, значит (130 мм-10 мм*3,14=376.8 мм) делим на количество полюсов (376.8:8=47.1 мм) и получаем ширину полюса 47.1 мм. Магниты возьмём 30*10*5 мм, их поместится 4 ряда в полюсе и останется зазор в 7 мм между полюсами. По длине ротор 130 мм, а у нас как-раз 4 магнита по длинне 120 мм, и получается на ротор нужно по 16 магнитов на полюс, а всего понадобится 128 магнитов.

Читать статью  Как можно использовать мотор-колесо в качестве генератора?

Можно использовать магниты любых других удобных размеров для набора полюсов. Магниты клеятся на супер-клей и другие клеи, а после наклейки оборачивается ротор скотчем и заливается эпоксидной смолой. Чтобы наиболее эффективно использовать магниты нужно делать минимальный зазор между магнитами и статором, тогда диаметр ротора с магнитами делают по диаметру статора, чтобы он на миллиметр не заходил в статор. После наклейки и заливки магнитов ротор подгоняют в статор шлифуя магниты, стачивают по немногу и пробуют вставлять в статор, добиваются того чтобы магниты были как можно ближе к зубам статора и при этом ротор вращался свободно без зацепов статора. При шлифовке очень важно не перегреть магниты, можно шлифовать на болгарке поливая водой, или на токарном станке.

Вообще желательно сделать новый цельно-металлический ротор под магниты, или на родной ротор асинхронника под магниты одеть металлическую гильзу. Так магниты будут работать гораздо эффективнее, и хватит толщины 3-4 мм, а если не ставить гильзу, то магниты желательно ставить потолще, к примеру 6-10 мм.

Ниже представлены данные по асинхронным двигателям, размеры, толщина обмоточного провода, количество полюсов, сопротивление обмотки и прочее. Атак-же расчёт мощности переделанного генератора на различных оборотах при работе на аккумуляторы напряжением 12/24/48 вольт. За основу расчёта я взял магнитную индукцию равной 1 Тл, но на практике она может быть больше или меньше, всё зависит от толщины магнитов, плотности заполнения полюсов. Если будет протачиваться родной ротор и без металлической гильзы, то при толщине магнитов 5 мм марки n50 магнитная индукция будет 0.8 Тл примерно, если магниты толщиной 8-10 мм, то магнитная индукция будет 1-1.2 Тл. А если с гильзой или с цельно-металлическим ротором, то при толщине магнитов 5-6 мм магнитная индукция составит около 1-1.2 Тл

Асинхронный двигатель АИР100L6 2,2 кВт

Число полюсов 6, 1000 об/м. Размеры статора: наружный диаметр 168 мм, внутренний диаметр 113 мм, длина статора 120 мм, число зубов 36. Обмотка: число проводников в пазу 42, диаметр провода 1,13 мм, трехфазный, сопротивление фазы 2.39 Ом.

Примерная мощность на АКБ 12/24/48 вольт при соединении треугольником

Асинхронный двигатель АИР100L8 1.5 кВт

Число полюсов 8, 750 об/м. Размеры статора: наружный диаметр 168 мм, внутренний диаметр 117 мм, длина статора 120 мм, число зубов 48. Обмотка: число проводников в пазу 48, диаметр провода 1,01 мм, трехфазный, сопротивление фазы 3.7 Ом.

Примерная мощность на АКБ 12/24/48 вольт при соединении треугольником

Асинхронный двигатель АИР112MA6 3 кВт

Число полюсов 6, 1000 об/м. Размеры статора: наружный диаметр 191 мм, внутренний диаметр 132 мм, длина статора 100 мм, число зубов 54. Обмотка: число проводников в пазу 28, диаметр провода 1,19 мм, трехфазный, сопротивление фазы 2 Ом.

Примерная мощность на АКБ 12/24/48 вольт при соединении треугольником

Асинхронный двигатель АИР112MA8 2.2 кВт

Число полюсов 8, 750 об/м. Размеры статора: наружный диаметр 191 мм, внутренний диаметр 132 мм, длина статора 100 мм, число зубов 48. Обмотка: число проводников в пазу 40, диаметр провода 1,13 мм, трехфазный, сопротивление фазы 2.6 Ом.

Примерная мощность на АКБ 12/24/48 вольт при соединении треугольником

Асинхронный двигатель АИР112MB8 3 кВт

Число полюсов 8, 750 об/м. Размеры статора: наружный диаметр 191 мм, внутренний диаметр 132 мм, длина статора 130 мм, число зубов 48. Обмотка: число проводников в пазу 31, диаметр провода 1,25 мм, трехфазный, сопротивление фазы 1.93 Ом.

Примерная мощность на АКБ 12/24/48 вольт при соединении треугольником

Асинхронный двигатель АИР132S6 5.5 кВт

Число полюсов 6, 1000 об/м. Размеры статора: наружный диаметр 225 мм, внутренний диаметр 154 мм, длина статора 115 мм, число зубов 54. Обмотка: число проводников в пазу 21, диаметр провода 1,13 мм, трехфазный, сопротивление фазы 1 Ом.

Примерная мощность на АКБ 12/24/48 вольт при соединении треугольником

Асинхронный двигатель АИР132S8 4 кВт

Число полюсов 8, 750 об/м. Размеры статора: наружный диаметр 222 мм, внутренний диаметр 158 мм, длина статора 112 мм, число зубов 48. Обмотка: число проводников в пазу 28, диаметр провода 1,48 мм, трехфазный, сопротивление фазы 1,24Ом.

Примерная мощность на АКБ 12/24/48 вольт при соединении треугольником

Множество двигателей не имеет смысла просчитывать, думаю представленной информации выше достаточно для того чтобы понять что получится из асинхронного двигателя различных размеров. Думаю что вполне можно и четырёх-полюсные на магниты переделывать, и даже двух-полюсные, но мощность будет ниже. Так-же я посчитал мощность при соединении фаз треугольником так-как при таком соединении сопротивление генератора меньше и следовательно ток зарядки выше. Но можно соединять и звездой, напряжение при этом поднимется в 1,7раза выше, но и сопротивление тоже, зато зарядка начнётся при ещё более низких оборотах.

Маломощные асинхронные двигатели от 0.18 до 1 кВт без перемотки статора не подходят для ветрогенераторов, энергию конечно давать будут, но из-за большого сопротивления обмоток ток зарядки будет очень маленький. Например 6-ти полюсной двигатель мощностью 0.55 кВт имеет сопротивление фазы 22Ом, и при 600 об/м мощность будет всего (130-13:22=5,3*13=69) 69ватт на АКБ 12вольт, а на 48вольт около 180ватт.

Винт для генератора можно рассчитать и изготовить из ПВХ труб, или сделать из дерева. Програ ммка по расчёту лопаситей описана в этой статье — Расчёт лопастей для ветрогенератора

Как сделать генератор для ветряка из асинхронного двигателя своими руками

Эти работы между собой не имеют практически ничего общего, так как надо сделать разные по сути и назначению узлы системы. Для изготовления того и другого элемента используются подручные механизмы и приспособления, которые можно использовать или переделать в необходимый узел. Один из вариантов создания генератора, часто используемый при изготовлении ветрогенератора — изготовление из асинхронного электродвигателя, которое наиболее удачно и качественно позволяет решить проблему. Рассмотрим вопрос подробнее:

Изготовление генератора из асинхронного двигателя

Асинхронный двигатель является наилучшей «заготовкой» для изготовления генератора. Он имеет для этого наилучшие показатели по устойчивости к короткому замыканию, менее требователен к попаданию пыли или грязи. Кроме того, асинхронные генераторы вырабатывают более «чистую» энергию, клирфактор (наличие высших гармоник) у этих устройств всего 2% против 15% у синхронных генераторов. Высшие гармоники способствуют нагреву двигателя и сбивают режим вращения, поэтому их малое количество является большим плюсом конструкции.

Читать статью  Весы на солнечных батареях: марки, плюсы, минусы, отзывы

Как сделать генератор для ветряка из асинхронного двигателя своими руками

Асинхронные устройства не имеют вращающихся обмоток, что в значительной степени снимает возможность выхода их из строя или повреждения от трения или замыкания.

Также важным фактором является наличие на выходных обмотках напряжения в 220В или 380 В, что позволяет подключать приборы потребления прямо к генератору, минуя систему стабилизации тока. То есть, пока есть ветер, приборы будут работать точно так же, как от сети.

Единственное отличие от работы полного комплекса в прекращении работы сразу же после стихания ветра, тогда как аккумуляторы, входящие в комплект, какое-то время питают потребляющие устройства используя свою емкость.

Как переделать ротор

Единственным изменением, которое вносится в конструкцию асинхронного двигателя при переделывании его в генератор, является установка на ротор постоянных магнитов. Для получения большей силы тока иногда перематывают обмотки более толстым проводом, имеющим меньшее сопротивление и дающим лучшие результаты, но эта процедура не критична, можно обойтись и без нее — генератор будет работать.

Ротор асинхронного двигателя не имеет никаких обмоток или иных элементов, являясь, по сути, обычным маховиком. Обработка ротора производится в токарном станке по металлу, обойтись без этого никак нельзя. Поэтому при создании проекта надо сразу решить вопрос с техническим обеспечением работ, найти знакомого токаря или организацию, занимающуюся такими работами. Ротор надо уменьшить в диаметре на толщину магнитов, которые будут на него установлены.

Как сделать генератор для ветряка из асинхронного двигателя своими руками

Существует два способа монтажа магнитов:

  • изготовление и установка стальной гильзы, которая одевается на предварительно уменьшенный в диаметре ротор, после чего на гильзу крепятся магниты. Этот способ дает возможность увеличить силу магнитов, плотность поля, способствующую более активному образованию ЭДС
  • уменьшение диаметра только на толщину магнитов плюс необходимый рабочий зазор. Этот способ проще, но потребует установки более сильных магнитов, лучше всего — неодимовых, которые имеют намного большее усилие и создают мощное поле.

Установка магнитов производится по линиям конструкции ротора, т.е. не воль оси, а несколько смещенными по направлению вращения (на роторе эти линии хорошо видны). Магниты расставляются по чередованию полюсов и фиксируются на роторе с помощью клея (рекомендуется эпоксидная смола). После ее высыхания можно производить сборку генератора, в который отныне превратился наш двигатель, и переходить к испытательным процедурам.

Испытания вновь созданного генератора

Эта процедура позволяет выяснить степень работоспособность генератора, опытным путем определить скорость вращения ротора, необходимую для получения нужного напряжения. Обычно прибегают к помощи другого двигателя, например, электродрели с регулируемой частотой вращения патрона. Вращая ротор генератора с подключенным к нему вольтметром или лампочкой, проверяют, какие скорости необходимы для минимума и каков максимальный предел мощности генератора, чтобы получить данные, на основе которых будет создаваться ветряк.

Можно в испытательных целях подключить какой-либо прибор потребления (например, нагреватель или осветительное устройство) и убедиться в его работоспособности. Это поможет снять все возникающие вопросы и внести какие-либо изменения, если возникнет такая необходимость. Например, иногда возникают ситуации с «залипанием» ротора, не стартующего при слабых ветрах. Это происходит при неравномерном распределении магнитов и устраняется разборкой генератора, отсоединением магнитов и повторным их укреплением в более равномерной конфигурации.

По завершении всех работ в распоряжении появляется полностью рабочий генератор, который отныне нуждается в источнике вращения.

Изготовление ветряка

Для создания ветряка потребуется выбрать какой-либо из вариантов конструкции, которых имеется немало. Так, существуют горизонтальные или вертикальные конструкции ротора (в данном случае термин «ротор» обозначает вращающуюся часть ветрогенератора — вал с лопастями, приводимый в движение силой ветра). Горизонтальные роторы имеют более высокую эффективность и устойчивость в производстве энергии, но нуждаются в системе наведения на поток, которая, в свою очередь, нуждается в легкости вращения на валу.

Чем мощнее генератор, тем труднее его вращать и тем большее усилие должен развивать ветряк, что требует его больших размеров. При этом, чем крупнее ветряк, тем он тяжелее и обладает большей инерцией покоя, что образует замкнутый круг. Обычно используют средние значения и величины, дающие возможность образовать компромисс между размерами и легкостью вращения.

Вертикальные ветряки проще в изготовлении и не требовательны к направлению ветра. При этом, они имеют меньшую эффективность, так как ветер с одинаковой силой воздействует на обе стороны лопасти, затрудняя вращение. Для того, чтобы избежать этого недостатка, создано множество различных конструкций ротора, таких как:

  • ротор Савониуса
  • ротор Дарье
  • ротор Ленца

Известны ортогональные конструкции (разнесенные относительно оси вращения) или геликоидные (лопасти, имеющие сложную форму, напоминающую витки спирали). Все эти конструкции имеют свои достоинства и недостатки, основным из которых является отсутствие математической модели вращения того или иного вида лопастей, делающего расчет крайне сложным и приблизительным. Поэтому действуют методом проб и ошибок — создается экспериментальная модель, выясняются ее недостатки, с учетом которых изготавливается рабочий ротор.

Наиболее простая и распространенная конструкция — ротор Савониуса, но в последнее время в сети появляется множество описаний других ветрогенераторов, созданных на базе других видов.

Устройство ротора несложно — вал на подшипниках, на верхней части которого укреплены лопасти, которые под действием ветра вращаются и передают крутящий момент на генератор. Изготовление ротора осуществляется из доступных материалов, монтаж не требует чрезмерной высоты (обычно поднимают на 3-7 м), это зависит от силы ветров в регионе. Вертикальные конструкции почти не требуют ухода или обслуживания, что облегчает эксплуатацию ветрогенератора.

Источник https://radiostorage.net/720-vetryanaya-ehlektrostanciya-na-baze-asinhronnogo-dvigatelya.html

Источник http://www.e-veterok.ru/generator-iz-asinxronnogo-dvigatelya.php

Источник https://energo.house/veter/generator-dlya-vetryaka.html

Добавить комментарий

Ваш адрес email не будет опубликован.