СОВРЕМЕННЫЕ ПОДХОДЫ К НОРМИРОВАНИЮ СОДЕРЖАНИЯ ТЯЖЕЛЫХ МЕТАЛЛОВ В ПОЧВЕ – тема научной статьи по биологическим наукам читайте бесплатно текст научно-исследовательской работы в электронной библиотеке КиберЛенинка

Содержание тяжелых металлов в почве и

в почве и растениях является чрезвычайно сложным из-за невозможности полного учета всех факторов природной среды. Так, изменение только агрохимических свойств почвы (реакции среды, содержания гумуса, степени насыщенности основаниями, гранулометрического состава) может в несколько раз уменьшить или увеличить содержание тяжелых металлов в растениях. Имеются противоречивые данные даже о фоновом содержании некоторых металлов. Приводимые исследователями результаты различаются иногда в 5-10 раз.

экологического нормирования тяжелых металлов. В некоторых случаях за предельно допустимую концентрацию принято самое высокое содержание металлов, наблюдаемое в обычных антропогенных почвах, в других- содержание, являющееся предельным по фитотоксичности. В большинстве случаев для тяжелых металлов предложены ПДК, превосходящие верхнюю норму в несколько раз.

тяжелыми металлами используется коэффициент концентрации, равный отношению концентрации элемента в загрязненной почве к его фоновой концентрации. При загрязнении несколькими тяжелыми металлами степень загрязнения оценивается по величине суммарного показателя концентрации (Zc). Предложенная ИМГРЭ шкала загрязнения почвы тяжелыми металлами преведена в таблице 1.

Таблица 1. Схема оценки почв сельскохозяйственного использования по степени загрязнения химическими веществами (Госкомгидромет СССР, № 02-10 51-233 от 10.12.90)

Категория почв по степени загрязнения Zc Загрязненность относительно ПДК Возможное использование почв Необходимые мероприятия
Допустимое Превышает фоновое, но не выше ПДК Использование под любые культуры Снижение уровня воздействия источников загрязнения почв. Снижение доступности токсикантов для растений.
Умеренно опасное 16,1- 32,0 Превышает ПДК при лимитирующем общесанитарном и миграционном водном показателе вредности, но ниже ПДК по транслока- ционному показателю Использование под любые культуры при условии контроля качества продукции растениеводства Мероприятия, аналогичные категории 1. При наличии в-в с лимитирующим миграционным водным показателем производится контроль за содержанием этих в-в в поверхностных и подземных водах.
Высоко- опасное 32,1- 128 Превышает ПДК при лимитирующем транслока- ционном показателе вредности Использование под технические культуры без получения из них продуктов питания и кормов. Исключить растения- концентраторы химических веществ Мероприятия аналогичные категории 1. Обязательный контроль за содержанием токсикантов в растениях, используемых в качестве питания и кормов. Ограничение использования зеленой массы на корм скоту, особенно растений- концентраторов.
Чрезвычайно опасное > 128 Превышает ПДК по всем показателям Исключить из С/Х использования Снижение уровня загрязнения и связывание токсикантов в атмосфере, почве и водах.

В таблице 2 приведены официально утвержденные ПДК и допустимые уровни их содержания по показателям вредности. В соответствие с принятой медиками-гигиенистами схеме нормирование тяжелых металлов в почвах подразделяется на транслокационное (переход элемента в растения), миграционное водное (переход в воду), и общесанитарное (влияние на самоочищающую способность почв и почвенный микробиоценоз).

Таблица 2. Предельно-допустимые концентрации (ПДК) химических веществ в почвах и допустимые уровни их содержания по показателям вредности (по состоянию на 01.01.1991. Госкомприрода СССР, № 02-2333 от 10.12.90).

Наименование веществ ПДК, мг/кг почвы с учетом фона Показатели вредности
Транслокационный Водный Общесанитарный
Водорастворимые формы
Фтор 10,0 10,0 10,0 10,0
Подвижные формы
Медь 3,0 3,5 72,0 3,0
Никель 4,0 6,7 14,0 4,0
Цинк 23,0 23,0 200,0 37,0
Кобальт 5,0 25,0 >1000 5,0
Фтор 2,8 2,8
Хром 6,0 6,0
Валовое содержание
Сурьма 4,5 4,5 4,5 50,0
Марганец 1500,0 3500,0 1500,0 1500,0
Ванадий 150,0 170,0 350,0 150,0
Свинец ** 30,0 35,0 260,0 30,0
Мышьяк ** 2,0 2,0 15,0 10,0
Ртуть 2,1 2,1 33,3 5,0
Свинец+ртуть 20+1 20+1 30+2 30+2
Медь* 55
Никель* 85
Цинк* 100

*- валовое содержание- ориентировочное.
**- противоречие; для мышьяка среднее фоновое содержание 6 мг/кг, фоновое содержание свинца обычно тоже превышает нормы ПДК.

Разработанные в 1995 г. ОДК для валового содержания 6 тяжелых металлов и мышьяка позволяют получить более полную характеристику о загрязнении почвы тяжелыми металлами, так как учитывают уровень реакции среды и гранулометрический состав почвы.

Таблица 3. Ориентировочно допустимые концентрации (ОДК) тяжелых металлов и мышьяка в почвах с различными физико-химическими свойствами (валовое содержание, мг/кг) (дополнение №1 к перечню ПДК и ОДК №6229-91).

Элемент Группа почв ОДК с учетом фона Агрегатное
состояние в-ва
в почвах
Классы опасн-ти Особенности
действия
на организм
Никель Песчаные и супесчаные 20 Твердое: в виде солей, в сорбированном виде, в составе минералов 2 Для теплокровных и человека малотоксичен. Обладает мутогенным действием
Кислые (суглинистые и глинистые), рН KCl

40
Близкие к нейтральным, (суглинистые и глинистые), рНKCl >5,5 80
Медь Песчаные и супесчаные 33 Твердое: в виде солей, органо- минеральных соединений, в сорбированном виде, в составе минералов 2 Повышает клеточную проницаемость, ингибирует глутатион- редуктазу, нарушает метаболизм, взаимодействуя с -SH, -NH2 и COOH- группами
Кислые (суглинистые и глинистые), рН KCl

66
Близкие к нейтральным, (суглинистые и глинистые), рН KCl>5,5 132
Цинк Песчаные и супесчаные 55 Твердое: в виде солей, органо- минеральных соединений, в сорбированном виде, в составе минералов 1 Недостаток или избыток вызывают отклонения в развитии. Отравления при нарушении технологии внесения цинксодержащих пестицидов
Кислые (суглинистые и глинистые), рН KCl

110
Близкие к нейтральным, (суглинистые и глинистые), рН KCl>5,5 220
Мышьяк Песчаные и супесчаные 2 Твердое: в виде солей, органо- минеральных соединений, в сорбированном виде, в составе минералов 1 Ядовитое в-во, ингибирующее различные ферменты, отрицательное действие на метаболизм. Возможно канцерогенное действие
Кислые (суглинистые и глинистые), рН KCl

5
Близкие к нейтральным, (суглинистые и глинистые), рН KCl>5,5 10
Кадмий Песчаные и супесчаные 0,5 Твердое: в виде солей, органо- минеральных соединений, в сорбированном виде, в составе минералов 1 Сильно ядовитое в-во, блокирует сульфгидрильные группы ферментов, нарушает обмен железа и кальция, нарушает синтез ДНК.
Кислые (суглинистые и глинистые), рН KCl

1,0
Близкие к нейтральным, (суглинистые и глинистые), рН KCl>5,5 2,0
Свинец Песчаные и супесчаные 32 Твердое: в виде солей, органо- минеральных соединений, в сорбированном виде, в составе минералов 1 Разностороннее негативное действие. Блокирует -SH группы белков, ингибирует ферменты, вызывает отравления, поражения нервной системы.
Кислые (суглинистые и глинистые), рН KCl

65
Близкие к нейтральным, (суглинистые и глинистые), рН KCl>5,5 130

Из материалов следует, что в основном предьявлены требования к валовым формам тяжелых металлов. Среди подвижных только медь, никель, цинк, хром и кобальт. Поэтому в настоящее время разработанные нормативы уже не удовлетворяют всем требованиям.

является фактором емкости, отражающим в первую очередь потенциальную опасность загрязнения растительной продукции, инфильтрационных и поверхностных вод. Характеризует общую загрязненность почвы, но не отражает степени доступности элементов для растения. Для характеристики состояния почвенного питания растений используются только их подвижные формы.

Их определяют используя различные экстрагенты. Общее количество подвижной формы металла- применяя кислотную вытяжку (например 1н HCL). В ацетатно-аммонийный буфер переходит наиболее мобильная часть подвижных запасов тяжелых металлов в почве. Концентрация металлов в водной вытяжке показывает степень подвижности элементов в почве, являясь самой опасной и «агрессивной» фракцией.

Предложено несколько ориентировочных нормативных шкал. Ниже находится пример одной из шкал предельно допустимых подвижных форм тяжелых металлов.

Таблица 4. Предельно допустимое содержание подвижной формы тяжелых металлов в почве, мг/кг экстрагент 1н. HCl (Х. Чулджиян и др., 1988).

Элемент Содержание Элемент Содержание Элемент Содержание
Hg 0,1 Sb 15 Pb 60
Cd 1,0 As 15 Zn 60
Co 12 Ni 36 V 80
Cr 15 Cu 50 Mn 600

НАВИГАЦИЯ ПО САЙТУ:
чаво ? в почву в гель результат тех данные цены
контакт ответы скачать ошибки форум лаба КУПИТЬ ГИДРОГЕЛЬ

Исключительными правами обладает ООО ‘Артэко Глобал’ Москва
Использование любых материалов (включая графические), частично или полностью; с целью их размещения на других сайтах; для публикации в печатном и электронном видах без письменного разрешения запрещено: РЕКОМЕНДУЕМ ПРОЧЕСТЬ ВНИМАТЕЛЬНО / &copy Гидрогель .ru, &copy ООО ‘Артэко Глобал’ /

СОВРЕМЕННЫЕ ПОДХОДЫ К НОРМИРОВАНИЮ СОДЕРЖАНИЯ ТЯЖЕЛЫХ МЕТАЛЛОВ В ПОЧВЕ Текст научной статьи по специальности «Биологические науки»

Аннотация научной статьи по биологическим наукам, автор научной работы — Васин Денис Викторович

В статье рассматриваются вопросы нормирования содержания тяжёлых металлов в почве. Приводятся показатели предельно — допустимых концентраций (ПДК), описывается предельное допустимое содержание подвижной формы тяжелых металлов , а также дается классификация биохимически активных элементов в кислых и сильно кислых почвах .The article deals with the issues of normalization of the content of heavy metals in the soil. The indicators of the maximum permissible concentration (MPC) are given, the maximum permissible content of the mobile form of heavy metals is described, and the classification of biochemically active elements in acidic and strongly acidic soils is given

Похожие темы научных работ по биологическим наукам , автор научной работы — Васин Денис Викторович

Содержание тяжелых металлов в поверхностных горизонтах почв функциональных зон Курской городской агломерации

Содержание тяжёлых металлов и мышьяка в почве селитебной зоны зато Циолковский на начальном этапе эксплуатации космодрома «Восточный»

Текст научной работы на тему «СОВРЕМЕННЫЕ ПОДХОДЫ К НОРМИРОВАНИЮ СОДЕРЖАНИЯ ТЯЖЕЛЫХ МЕТАЛЛОВ В ПОЧВЕ»

СОВРЕМЕННЫЕ ПОДХОДЫ К НОРМИРОВАНИЮ СОДЕРЖАНИЯ ТЯЖЕЛЫХ МЕТАЛЛОВ В

Васин Денис Викторович

кандидат географических наук, доцент МГОУ (Московский государственный областной университет)

Аннотация. В статье рассматриваются вопросы нормирования содержания тяжёлых металлов в почве. Приводятся показатели предельно — допустимых концентраций (ПДК), описывается предельное допустимое содержание подвижной формы тяжелых металлов, а также дается классификация биохимически активных элементов в кислых и сильно кислых почвах.

Abstract. The article deals with the issues of normalization of the content of heavy metals in the soil. The indicators of the maximum permissible concentration (MPC) are given, the maximum permissible content of the mobile form of heavy metals is described, and the classification of biochemically active elements in acidic and strongly acidic soils is given

Ключевые слова: нормирование, тяжелые металлы, кислые почвы, предельно — допустимые концентрации (ПДК), биохимически активные элементы, фоновые значения

Keywords: rationing, heavy metals, acidic soils, maximum permissible concentrations (MPC), biochemically active elements, background values

Определению «тяжелые металлы» соответствует достаточно большое количество элементов, однако соединения этих элементов далеко не равнозначны как загрязняющие вещества [1].

В процессе хозяйственной деятельности в почву поступает огромное количество веществ, геохимическая активность которых изменяется в зависимости от местных условий [2].

Нормирование содержания тяжелых металлов в почве является в настоящее время довольно сложной проблемой, так как невозможно полностью учесть все факторы изменяющейся природной среды. Изменение одних факторов неизменно приводит к изменению других. Например, при меняющихся агрохимических свойствах почвы (реакция среды, содержание гумуса, степень насыщенности основаниями, гранулометрический состав) увеличивается или уменьшается в несколько раз содержание тяжелых металлов в растениях. Нормирование тяжелых металлов в почвах необходимо для установления их фоновых значений и установление их предельно — допустимых концентраций (ПДК). Под ПДК тяжелых металлов следует понимать такую их концентрацию, которая при длительном действии на почву не вызывает каких-либо патологических изменений или аномалий в ходе биологических процессов, а также не приводит к накоплению токсических элементов в растениях и, следовательно, не может нарушить биологический оптимум для животных и человек[3]. В некоторых случаях за предельно — допустимую концентрацию принято самое высокое содержание металлов, наблюдаемое в обычных антропогенных почвах, в других — содержание, являющееся предельным по фитотоксичности. В большинстве случаев для тяжелых металлов предложены ПДК, превосходящие верхнюю норму в несколько раз (табл. 1). Существует несоответствие в ряде случаев между ПДК и фоновыми значениями, так как иногда фоновое содержание тяжелых металлов в почвах относительно незагрязненных территорий превышает величины ПДК.

В последнее время осуществляются попытки создать ПДК для всех почвенных типов различных климатических зон [4]. Для почв различных территорий необходимо рассчитать предельную величину нагрузок, обеспечивающее нормальное функционирование экосистем. Часто нормирование осуществляется для агрономических, санитарно -гигиенических и почвенно — экологических целей [5]

Предельно — допустимые концентрации (ПДК) химических веществ в почвах и допустимые уровни

их содержания по показателям вредности, мг/кг

Наименова- ние веществ ПДК, мг/кг почвы, с учетом фона Показатели вредности

Тяжелые металлы в почвах

В настоящий момент для обозначения практически одинаковой группы химических элементов широко применяются два различных термина: микроэлементы и тяжелые металлы.

Микроэлементы – понятие, зародившееся в геохимии и ныне активно используемое в сельскохозяйственных науках, медицине, токсикологии, санитарии. Оно обозначает группу химических элементов, которые содержатся в природных объектах в очень малых количествах – менее 0,01%, как правило, 10 -3 –10 -12 %. Формально в основу выделения положена их распространенность в природе, которая для разных природных сред и объектов (литосфера, педосфера, донные осадки, гидросфера, растения, животные и др.) существенно различается.

Термин »тяжелые металлы» в большей степени отражают эффект загрязнения окружающей среды и токсичное воздействие элементов при их поступлении в биоту. Он заимствован из технической литературы, где применяется для обозначения химических элементов с плотностью более 5 г/см 3 . Если исходить из этого показателя, тяжелыми следует считать 43 из 84 металлов, входящих в Периодическую систему элементов Менделеева. Однако при такой трактовке под данное определение не попадают Be – 1,85 г/см 3 , Al – 2,7, Sc – 3,0, Ti – 4,6, Rb – 1,5, Sr – 2,6, Y – 4,5, Cs – 1,9, Ba – 3,8 г/см 3 , которые при избыточных концентрациях также бывают опасными. Необходимость включения в эту группу легких металлов-токсикантов была достигнута изменением критерия отбора, когда в данную группу стали относить элементы с атомной массой более 40. При таком подходе из токсикантов в нее не попали лишь Be и Al.

Поэтому вполне обоснованным является включение в современную трактовку термина “тяжелые металлы” большой группы токсичных химических элементов, в том числе и неметаллов.

Всего насчитывается свыше 40 тяжелых металлов. Приоритетными загрязнителями считаются Pb, Cd, Zn, Hg, As и Cu, так как их техногенное накопление в окружающей среде идет очень высокими темпами. Эти элементы обладают большим сродством к физиологически важным органическим соединениям. Их избыточные количества в организме живых существ нарушает все процессы метаболизма и приводят к серьезным заболевания человека и животных. В то же время, многие их элементов (Co, Cu, Zn, Se, Mn) довольно широко используются в народнохозяйственном производстве (особенно в сельском хозяйстве, медицине и др.) под названием микроэлементы, о чем говорилось выше.

Хром ( Cr ). Содержание элемента в почвах зависит от его содержания в материнских породах.

Хром отличается широким разнообразием состояний окисления и способностью формировать комплексные анионные и катионные ионы ( Cr ( OH ) 2+ , CrO 4 2- , CrO 3 — ). В природных соединениях он обладает валентностью +3 (хромовые соединения) и +6 (хроматы). Большая часть Cr 3+ присутствует в хромате FeCr 2 O 4 или других минералах шпинелевого ряда в которых он замещает железо и алюминий.

В почвах большая часть хрома присутствует в виде Cr 3+ входит в состав минералов или образует различные Cr 3+ и Fe 3+ оксиды. Соединения хрома в почвах весьма стабильны, так как в кислой среде он инертен (при рН 5,5 он почти полностью выпадает в осадок). Поведение хрома зависит от рН и окислительно-восстановительного потенциала почв.

На поведение хрома в почвах большое влияние оказывают и органические комплексы. Важным моментом в поведении элемента, с которым связана доступность хрома для растений, является легкость, с которой растворимый Cr 6+ при нормальных почвенных условиях переходит в нерастворимый Cr 3+ . В результате окисляющей способности соединений марганца в почвах может наблюдаться окисление Cr 3+ .

Хром является важным элементом питания растений. Снижение его подвижности хрома в почвах может приводить к дефициту в растениях. Легко растворимый в почвах Cr 6+ токсичен для растений и животных.

Известкование применение фосфора и органических веществ заметно снижает токсичность хрома в загрязненных почвах.

Свинец (Pb). Содержание свинца в земной коре составляет 1,6×10 -3 весовых процента. Естественное содержание свинца в почвах колеблется от 3 до 189 мг/кг. В естественных условиях его главная форма – галенит PbS . Свинец присутствует в виде Pb 2+ . При выветривании сульфиды свинца медленно окисляются.

По геохимическим свойствам свинец близок к группе двухвалентных щелочноземельных элементов, поэтому способен замещать К, Ва, Sr , Са как в минералах, так и при процессе сорбции. Из-за широкомасштабного загрязнения свинцом большинство почв, особенно верхние горизонты, обогащены этим элементом.

Среди тяжелых металлов он наименее подвижен. Свинец ассоциируется главным образом с глинистыми минералами, оксидами марганца, гидроксидами железа и алюминия, органическим веществом. При высоких рН свинец осаждается в почве в виде гидроксида, фосфата, карбоната. Эти же условия способствуют образованию Pb -органических комплексов.

Уровни содержаний, при котором элемент становится токсичным, колеблются в пределах 100-500 мг/кг. Свинцовые загрязнения от предприятий цветной металлургии представлены минеральными формами, от выхлопных газов автотранспорта – галогенидных солей. Содержащие Pb частицы выхлопных газов неустойчивы и легко превращаются в оксиды, карбонаты, сульфаты. Загрязнение почв свинцом носит необратимый характер, поэтому накопление микроэлемента в верхнем горизонте почв будет идти даже в условиях его небольшого привноса.

Загрязнение почв свинцом в настоящее время не вызывает большого беспокойства из-за нерастворимости адсорбированных и осажденных ионов Pb в почвах. Однако содержание свинца в корнях растений коррелирует с его содержанием в почвах, что указывает на поглощение элемента растениями. Накопление свинца в верхнем горизонте почв имеет также большое экологическое значение, так как он сильно воздействует на биологическую активность почв и почвенную биоту. Его высокие концентрации могут тормозить микробиологические процессы особенно в почвах с низким значением катионообменной емкости.

Кадмий (Cd). Кадмий является рассеянным элементом. Распространенность кадмия в земной коре составляет 5×10 -5 весовых процента. Геохимия Cd тесно связана с геохимией цинка, он обнаруживает большую подвижность в кислых средах.

При выветривании кадмий легко переходит в раствор где присутствует в виде Cd 2+ . Он может образовывать комплексные ионы CdCl + , CdOH + , CdHCO 3 + , Cd ( OH )3 — , Cd ( OH )4 2- , а также органические хелаты. Главное валентное состояние кадмия в природных средах +2. Наиболее важными факторами, контролирующие подвижность ионов кадмия, являются рН среды и окислительно-восстановительный потенциал. В сильноокислительных условиях Cd способен образовывать собственно минералы, а также накапливаться в фосфатах и биогенных осадках.

Главный фактор, определяющий содержание элемента в почвах – состав материнских пород. Среднее содержание кадмия в почвах – от 0,07 до 1,1 мг/кг. При этом фоновые уровни не превосходят 0,5 мг/кг, более высокие значения являются результатом антропогенной деятельности.

В связывании кадмия различными компонентами почвы ведущим процессом является конкурирующая адсорбция на глинах. В любой почве активность кадмия сильно зависит от рН. Элемент наиболее подвижен в кислых почвах в интервале рН 4,5-5,5, в щелочных он относительно неподвижен. При росте рН до щелочных значений появляется одновалентный гидроксокомплекс Cd ОН + , который не может легко заменить позиции в ионообменном комплексе.

Для кадмия наиболее характерна миграция вниз по профилю, чем накопление в верхних горизонтах почв, поэтому обогащение элементом верхних слоев свидетельствует о загрязнении почв. Загрязнение почв Cd опасно для биоты. В условиях техногенной нагрузки максимальные уровни кадмия в почвах характерны для районов свинцово-цинковых рудников, вблизи предприятий цветной металлургии, на сельскохозяйственных угодьях, где используются сточные воды и фосфатные удобрения.

Для уменьшения токсичности Cd в почвах используются методы, направленные на повышение рН и катионообменной емкости почв.

Ртуть (Hg). Ртуть и ее сульфид (киноварь) известны человеку с давних времен. Это единственный металл, который при обычной температуре находится в жидком виде. Алхимики считали ртуть носительницей металлических свойств и рассматривали ее как общую составную часть всех металлов.

Содержание ртути в земной коре составляет 1×10 -6 %. Известные в природе соединения ртути составляют около 20 самостоятельных минералов. Основной минерал – киноварь. В процессе миграции образуются также самородная ртуть, амальгамы ртути с золотом, серебром, ртутно-сурьмяные, галоидные и другие минералы ртути.

Важными геохимическими свойствами ртути являются: образование сильных связей с серой, образование органо-металлических соединений, сравнительно устойчивых в водной среде, летучесть элементарной ртути. Ртуть малоподвижна при выветривании, задерживается почвой главным образом в форме слабоподвижных органических комплексов.

Сорбция Hg 2+ в почве изменяется в зависимости от величины рН, будучи максимальной при рН 4-5. Средние концентрации ртути в поверхностном слое почвы не превышают 400 мкг/кг. Фоновые уровни элемента можно оценить как 0, n мг/кг, однако точные количества определить трудно из-за широкого загрязнения почв этим металлом. Загрязнение почв ртутью связано с предприятиями, производящими тяжелые металлы, с химическим производством, с применением фунгицидов.

Загрязнение почв ртутью само по себе не является серьезной проблемой, тем не менее даже простые соли Hg или металлическая ртуть создают опасность для растений и почвенной биоты из-за отравляющих свойств паров ртути. Потребление элемента корнями растений может быть сведено до минимума путем внесения извести, серусодержащих соединений и твердых фосфатов.

Мышьяк (As). Мышьяк известен с древности. Еще Аристотель и Теофраст упоминают о естественных сернистых соединениях мышьяка, применявшихся в качестве лечебных средств и красок. Среднее содержание элемента в земной коре — 5×10 -4 весовых процента. Характеризуется однородным распределением в главных типах горных пород. Образует собственные минералы и входит в состав других. Элемент связан с месторождениями других минералах и выступает как индикатор при поисковых геохимических работах. Минералы мышьяка хорошо растворимы. Однако интенсивность его миграции невелика вследствии активной сорбции глинистыми частицами, гидроксидами, органическим веществом.

Обычные состояния окисления As; -3, 0, +3, +5. Комплексные анионы AsО2, AsО4 3- , НAsО4 2- , As2О3 — являются наиболее распространенными подвижными формами мышьяка. По особенностям поведения AsО4 3- близок к фосфатам. Наиболее распространенная форма мышьяка в условиях окружающей среды — As 5+ .

Мышьяк, адсорбированный почвой, с трудом поддается десорбции, а прочность связывания элемента почвой с годами увеличивается. Наиболее низкие уровни содержания мышьяка характерны для песчаных почв. Его максимальные концентрации связаны с аллювиальными почвами и почвами, обогащенными органическим веществом.

Токсичность мышьяка в почвах может быть снижена разными способами в зависимости от источника загрязнения и свойств почв. Увеличение окислительного состояния почв, применение веществ, способствующих осаждению и связыванию элемента (сульфата железа, карбоната кальция), ограничивает биодоступность мышьяка. Внесение фосфатных удобрений также снижает поступление элемента в биоту.

Никель ( Ni ). Содержание никеля в земной коре составляет 8×10 -3 весовых процента. В распространении никеля в земной коре наблюдается сходство с кобальтом и железом. В континентальных отложениях он присутствует в виде сульфидов и арсенидов и часто замещает железо в железомагнезиальных соединениях. В соединениях никель главным образом двух- и трехвалентен.

При выветривании горных пород элемент легко высвобождается, а затем осаждается с оксидами железа и марганца. Он относительно стабилен в водных растворах и может мигрировать на большие расстояния.

В почвах никель тесно связан с оксидами марганца и железа, и в этой форме наиболее доступен для растений. В верхних горизонтах почв никель присутствует в органически связанных формах, часть из которых представлена легко растворимыми хелатами. Самые высокие содержания Ni наблюдаются в глинистых и суглинистых почвах, в почвах на основных и вулканических породах и в почвах, богатых органикой.

В настоящее время никель считается серьезным загрязнителем. Антропогенные источники никеля приводят к его существенному увеличению в почвах. В осадках сточных вод Ni присутствует в форме легкодоступных органических хелатов и может быть фитотоксичным. Снижению его доступности для растений способствуют внесение фосфатов или органического вещества.

Расчеты, проведенные в Беларуси, свидетельствуют о том, что в атмосферу республики только от стационарных источников сжигания топлива попадает 72% мышьяка, 57% ртути, около 99% никеля, 27% кадмия, 33% хрома, 27% меди, 15% свинца, 11% цинка. Цементное производство привносит значительные количества кадмия, свинца, хрома. Передвижные источники в основном загрязняют атмосферу цинком и медью.

Кроме атмосферных выпадений, значительное количество металлов привносится в почву при использовании удобрений, в том числе на основе осадков сточных вод и бытовых отходов. В составе примесей в удобрениях находится кадмий, хром, медь свинец, уран, ванадий и цинк, с отходами интенсивного животноводства и птицеводства – медь и мышьяк, с компостом и навозом — кадмий, медь, никель, цинк и мышьяк, с пестицидами – кадмий, мышьяк, ртуть, свинец, марганец и цинк.

Сложность состава почв, большой набор химических соединений обусловливают возможность одновременного протекания различных химических реакций и способность твердых фаз почв поддерживать сравнительно постоянным состав почвенного раствора, откуда растения непосредственно черпают химические элементы. Эту способность поддерживать постоянным состав почвенного раствора называют буферностью почв. В природной обстановке буферность почв выражается в том, что при потреблении какого-либо элемента из почвенного раствора происходит частичное растворение твердых фаз и концентрация раствора восстанавливается. Если в почвенный раствор извне попадают излишние количества каких-либо соединений, то твердые фазы почв связывают такие вещества, вновь поддерживая постоянство состава почвенного раствора. Итак, действует общее правило: буферность почв обусловлена большим набором одновременно протекающих химических реакций между почвенным раствором и твердыми частями почвы. Химическое разнообразие делает почву устойчивой в изменяющихся условиях природной среды или при антропогенной деятельности.

Источник http://gidrogel.ru/ecol/hv_met.htm

Источник https://cyberleninka.ru/article/n/sovremennye-podhody-k-normirovaniyu-soderzhaniya-tyazhelyh-metallov-v-pochve

Источник https://www.bygeo.ru/materialy/pervyi_kurs/pochvovedi-zem-res-u-chtenie/1769-tyazhelye-metally-v-pochvah.html

Читать статью  МЕТАЛЛЫ • Большая российская энциклопедия - электронная версия

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *