Современные представления о кинетике и патогенезе токсического воздействия тяжелых металлов (обзор литературы) – тема научной статьи по фундаментальной медицине читайте бесплатно текст научно-исследовательской работы в электронной библиотеке КиберЛенинка

 

Содержание

Современные представления о кинетике и патогенезе токсического воздействия тяжелых металлов (обзор литературы) Текст научной статьи по специальности «Фундаментальная медицина»

Аннотация научной статьи по фундаментальной медицине, автор научной работы — Ахполова В.О., Брин В.Б.

Токсическое воздействие тяжелых металлов является одной из старейших экологических проблем, известных человечеству, но при этом остается серьезной угрозой здоровью населения всей планеты в наши дни. Для оказания своевременной помощи населению, а также разработки профилактических мер по предотвращению развития отравления данными металлами, необходимо тщательное изучение механизмов поступления ксенобиотиков в организм человека и животных, их распределения в различных органах и тканях, а также патогенеза их влияния на клеточном уровне. В данном литературном обзоре рассматриваются вопросы кинетики и механизмов повреждающего действия двух наиболее распространенных токсикантов — кадмия и свинца. В работе показано, что кинетика кадмия и свинца в организме человека однотипна и следует одной важной закономерности — тяжелые металлы не имеют собственных переносчиков и попадают в клетки организма и кровь, используя транспортные системы, предназначенные для присутствующих в организме в норме металлов и микроэлементов. Что касается патогенеза токсического влияния на организм, то здесь также прослеживаются общие черты, характерные для многих видов повреждений, — активация перекисного окисления липидов, повреждающее действие на внутриклеточные белки и стимуляция апоптоза, замещение жизненно важных микроэлементов.

Похожие темы научных работ по фундаментальной медицине , автор научной работы — Ахполова В.О., Брин В.Б.

Повышение пределов толерантности сельскохозяйственой птицы к экотоксикантам при использовании «Тиофана м»

ACTUAL CONCEPTS OF HEAVY METALS’ KINETICS AND PATHOGENESIS OF TOXICIT

Heavy metals toxicity is one of the oldest environmental problems known to mankind, but nowadays there is still a serious threat to the health of the entire planet’s population. Cadmium and lead are the most common environmental toxicants. To provide the timely assistance to the population and the development of the preventive measures from the heavy metals poisoning, a thorough study of the mechanisms of xenobiotics’ entry into the human and animal body and their distribution in various organs and tissues, as well as the pathogenesis of their toxic effects at the cellular level, is necessary. This literature review shows that the kinetics of cadmium and lead in the human body is the same and follows one important pattern — heavy metals do not have their own carriers and enter the cells of the body and blood using transport systems designed for normal metals and microelements present in the body. As for the pathogenesis of toxic effects on the organism, there are also common features which are characteristic for different types of damage — activation of lipid peroxidation, a damaging effect on intracellular proteins and stimulation of apoptosis, replacement of vital trace elements.

Текст научной работы на тему «Современные представления о кинетике и патогенезе токсического воздействия тяжелых металлов (обзор литературы)»

JOURNAL OF NEW MEDICAL TECHNOLOGIES — 2020 — V. 27, № 1 — P. 55-61

УДК: 616-092.18:616-099 DOI: 10.24411/1609-2163-2020-16578

СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ О КИНЕТИКЕ И ПАТОГЕНЕЗЕ ТОКСИЧЕСКОГО ВОЗДЕЙСТВИЯ

ТЯЖЕЛЫХ МЕТАЛЛОВ (обзор литературы)

В.О. АХПОЛОВА*, В.Б. БРИН***

*ФГБОУ ВО СОГМА Минздрава РФ, ул. Пушкинская, д. 40, г. Владикавказ, 362019, РСО-Алания,

e-mail: vbbrin@yandex.ru «ФГВУНИБМИфилиал ВНЦ РАН, ул. Пушкинская, д. 47, г. Владикавказ, 362025, РСО-Алания

Аннотация. Токсическое воздействие тяжелых металлов является одной из старейших экологических проблем, известных человечеству, но при этом остается серьезной угрозой здоровью населения всей планеты в наши дни. Для оказания своевременной помощи населению, а также разработки профилактических мер по предотвращению развития отравления данными металлами, необходимо тщательное изучение механизмов поступления ксенобиотиков в организм человека и животных, их распределения в различных органах и тканях, а также патогенеза их влияния на клеточном уровне. В данном литературном обзоре рассматриваются вопросы кинетики и механизмов повреждающего действия двух наиболее распространенных токсикантов — кадмия и свинца. В работе показано, что кинетика кадмия и свинца в организме человека однотипна и следует одной важной закономерности — тяжелые металлы не имеют собственных переносчиков и попадают в клетки организма и кровь, используя транспортные системы, предназначенные для присутствующих в организме в норме металлов и микроэлементов. Что касается патогенеза токсического влияния на организм, то здесь также прослеживаются общие черты, характерные для многих видов повреждений, — активация перекисного окисления липидов, повреждающее действие на внутриклеточные белки и стимуляция апоптоза, замещение жизненно важных микроэлементов.

Ключевые слова: кадмий, свинец, тяжелые металлы, интоксикация, кинетика, патогенез.

ACTUAL CONCEPTS OF HEAVY METALS’ KINETICS AND PATHOGENESIS OF TOXICITY

V.O. AKHPOLOVA*, V.B. BRIN»*

*FSBEIHENOSMA MOHRussia, Pushkinskaya Str., 40, Vladikavkaz, 362019, North-Ossetia-Alania,

e-mail: vbbrin@yandex.ru **FSBISIBMIVSCRAS Russia, Pushkinskaya, Str., 47, Vladikavkaz, 362025, North Ossetia-Alania

Abstract. Heavy metals toxicity is one of the oldest environmental problems known to mankind, but nowadays there is still a serious threat to the health of the entire planet’s population. Cadmium and lead are the most common environmental toxicants. To provide the timely assistance to the population and the development of the preventive measures from the heavy metals poisoning, a thorough study of the mechanisms of xenobiotics’ entry into the human and animal body and their distribution in various organs and tissues, as well as the pathogenesis of their toxic effects at the cellular level, is necessary. This literature review shows that the kinetics of cadmium and lead in the human body is the same and follows one important pattern — heavy metals do not have their own carriers and enter the cells of the body and blood using transport systems designed for normal metals and microelements present in the body. As for the pathogenesis of toxic effects on the organism, there are also common features which are characteristic for different types of damage — activation of lipid peroxidation, a damaging effect on intracellular proteins and stimulation of apoptosis, replacement of vital trace elements.

Keywords: cadmium, lead, heavy metals, intoxication, kinetics, pathogenesis.

Изучение токсического воздействия тяжелых металлов на организм человека приобрело особую значимость в последние 50 лет вследствие того, что развитие промышленности сопровождается увеличением экологической нагрузки на окружающую среду. При достаточно хороших и современных очистных сооружениях, опасность загрязнения все же сохраняется, поскольку большие количества промышленных отходов утилизируются и, не являясь биоразлагае-мыми, остаются в окружающей среде в течение длительного времени. По этой причине высокие уровни тяжелых металлов присутствуют в почве, воде, несмотря на строгие ограничения, введенные в России, странах Европы, Северной Америки и многих других, что приводит к хроническому воздействию на население в целом [20,23].

Тяжелые металлы — неоднородная группа элементов. Некоторые из них необходимы для орга-

низма человека. К ним можно отнести железо, кобальт, медь, марганец, молибден и цинк. Неизвестно, служат ли другие металлы — свинец, кадмий, мышьяк, ртуть — для каких-либо целей в организме, но они оказывают прямое токсическое влияние на органы и системы человека и животных [6,16].

Кадмий и свинец являются наиболее распространенными токсикантами в окружающей среде. Огромное количество людей ежедневно подвергается патогенному воздействию этих ксенобиотиков через атмосферный воздух, питьевую воду, продукты питания, промышленные материалы и потребительские товары. Отравления солями кадмия и свинца вызывают широкий спектр неблагоприятных последствий для здоровья людей и животных. Токсичность кадмия связана с нарушением функционирования дыхательной, выделительной, пищеварительной, опорно-двигательной, репродуктивной, сердечно-сосудистой

и других систем. Воздействие свинца вызывает возникновение неврологических и гематологических симптомов, повреждение почек и печени и иные изменения в организме человека [8,16,18].

Для оказания своевременной помощи населению, а также разработки профилактических мер по предотвращению развития отравления данными металлами, необходимо тщательное изучение механизмов поступления ксенобиотиков в организм человека и животных и распределения в различных органах и тканях, а также патогенеза их токсического влияния на клеточном уровне, что и явилось основной задачей данного обзора.

Кадмий. Кадмий является очень стойким токсикантом в окружающей среде, который демонстрирует более высокие показатели перехода из почвы в растения, по сравнению с другими тяжелыми металлами, такими как свинец и ртуть, что делает кадмий загрязнителем пищевой цепи, вызывающим серьезную озабоченность. Кроме того, оксид кадмия (СйО), который является высоко биодоступной формой металла, присутствует в сигаретном дыме и загрязненном воздухе. Это подтверждает факт повышения концентрации токсиканта в крови, моче и тканях курильщиков по сравнению с некурящими аналогичного возраста и пола [6,8,15]. Исторически известен тот факт, что потребление риса, загрязненного кадмием вследствие массивных выбросов в бассейне реки Джинзу в Японии, вызвало вспышку болезни итай-итай, которая поражала в основном женщин. Отличительными признаками заболевания являются тяжелое поражение почек, генерализованный остеопороз, остеомаляция и множественные переломы костей [12,18].

Потребление с пищей кадмия является одной из основных переменных для определения его нагрузки на организм. Исследования на экспериментальных животных показали, что поглощается 0,5-8% поступающего с пищей нитрата кадмия или хлорида кадмия. К факторам, которые могут вызывать колебания поглощения токсиканта, относятся: виды животных; тип соединений; доза и частота приема; взаимодействие с различными питательными веществами или лекарствами; особенности питания; возраст; пол; некоторые физиологические состояния, такие как беременность и кормление грудью [9,15,20].

Кадмий пищи поглощается теми же транспортными системами, которые организм использует для получения кальция, железа, цинка и марганца. Соответственно, пищевой статус этих незаменимых микроэлементов может влиять на его кинетику. Было показано, что в организме крыс, получавших минимальное количество указанных веществ, задерживается до восьми раз больше меченного 109 Сй, по сравнению с животными с достаточным количеством минералов в пище [22,24]. Работами нашей кафедры установлено, что гипокальциемия увеличивает концентрацию токсиканта в крови и, соответственно, его нефротоксическое действие [4]. Кадмий может использовать два основных переносчика для проникно-

вения в клетки желудочно-кишечного тракта: переносчик двухвалентнъх металлов (DMT1) и переносчик кальция (CaT или TRPV6 канал). DMT1 является интегральным белком и содержит 12 трансмембранных доменов с экстрацитоплазматической петлей. DMT1 находится в двенадцатиперстной кишке, эритроцитах, печени и в клетках проксимальных извитых канальцев. Транспортер способен переносить различные катионы двухвалентных металлов двумя механизмами: протон-связанным и мембранно-зависимым. В кишечнике этот белок, вероятно, приводит к захвату металлов на апикальной поверхности энтероцитов путем котранспорта с протонами (со стехиометрией 1H+:1M2+). В ряде исследований продемонстрировано, что DMT1 обладает широкой субстратной специфичностью, которая благоприятствует транспорту двухвалентных металлов, таких как железо, марганец, цинк, медь и кадмий in vitro. Высказано предположение, что недостаток железа увеличивает апикальный транспорт кадмия в тонком кишечнике за счет увеличения экспрессии мРНК DMT1. Исследования на крысах продемонстрировали сильную корреляцию между абсорбцией токсиканта и дуоденальной экспрессией переносчика двухвалентных металлов. Сродство DMT1 к кадмию выше, чем к железу, и кадмий переносится вместо железа в состоянии повышенной экспрессии DMT1. Соответственно, DMT1 определяет поглощение ксенобиотика из желудочно-кишечного тракта и влияет на последующий его транспорт в систему кровообращения и ткани организма [7,12,13].

Другие переносчики, которые могут участвовать в транспорте кадмия в желудочно-кишечном тракте, — это белок (ZIP) семейства транспортеров цинка, металл-бикарбонатный симпортер, который обладает выраженной экспрессией в энтероцитах и может легко переносить свободный кадмий, и кальций-селективный канал, TRPV6. Среди четырнадцати известных представителей семейства переносчиков цинка для ZIP8 и ZIP14 показана их способность участвовать в переносе кадмия. Выяснено, что в клеточных линиях с искусственно созданной сниженной экспрессий транспортеров цинка 8 и 14 типа трансмембранный перенос кадмия значительно уменьшается [9,12]. Рядом исследований продемонстрировано, что множественный дефицит незаменимых микроэлементов способен увеличивать кишечную экспрессию переносчиков кальция (TRPV6, CaT1), что приводит к повышению накопления кадмия в тканях. TRPV6 принадлежит к семейству ва-ниллоидов суперсемейства TRP [4,9,10]. Этот кальций-селективный канал обладает выраженной экспрессией в двенадцатиперстной кишке и плаценте, отвечая за усвоение кальция в организме взрослого и плода. Эксперименты по визуализации живых клеток с Fura-2 и NewPort Green DCF показали, что повышенная экспрессия человеческого TRPV6 увеличивает проницаемость энтероцитов не только для кальция, но и для бария, стронция, марганца, цинка

Читать статью  К проблеме выведения из организма человека тяжелых металлов – тема научной статьи по клинической медицине читайте бесплатно текст научно-исследовательской работы в электронной библиотеке КиберЛенинка

и кадмия. Другими исследованиями показано, что дефицит кальция вызывает значительное увеличение почечной и печеночной кумуляции ксенобиотика при его пероральном введении [4,10].

До конца не ясно, как кадмий достигает базола-теральной поверхности клеток, а затем выходит из энтероцита в кровоток. Некоторые исследователи предполагают, что цитоплазматический кальцийс-вязывающий белок (кальбайндин) может участвовать в цитоплазматическом транспорте, а белок-экспортер железа, ферропортин 1 (БРШ), ответственен за клеточный отток кадмия [7,9]. БРШ присутствует в базолатеральной мембране энтероцитов, но доказательств его определяющей роли в выведении кадмия нет. Кроме того есть данные, что комплексы кадмия с пептидами и небольшими белками могут напрямую абсорбироваться в желудочно-кишечном тракте путем трансцитоза [8,17].

После всасывания в желудочно-кишечном тракте, кадмий, как полагают, образует слабые связи с белками плазмы, такими как альбумин, и переносится через портальную систему кровообращения к клеткам печени. Там он индуцирует синтез специфического металлсвязывающего белка с низким содержанием цистеина, металлотионина (МТ, молекулярная масса ~ 7 кДа), с которым связывается намного более прочно [7,11,21].

Таким образом, кадмий, попадающий в системное кровообращение, может быть слабо связан с альбумином, аминокислотами, глутатионом или прочно связан с МТ, а кроме того, может находиться в свободном, ионизированном виде. Ионизированные формы тяжелых металлов присутствуют в крови преимущественно во время острой интоксикации. Высокая способность кадмия образовывать комплексы (или конъюгаты) объясняет тот факт, что зафиксированное содержание в крови его свободной ионизированной формы составляет менее 10% от общей концентрации. Поскольку клетки печени не поглощают комплекс кадмия с белками, он транспортируется из желудочно-кишечного тракта непосредственно в почки [11,21,23].

Следует отметить, что после системного введения однократной дозы кадмия, тяжелый металл быстро выводится из крови, хотя экскреция его с мочой остается необнаруживаемой. По-видимому, в этих условиях вся масса вводимого металла быстро изолируется различными тканями, главным образом печенью (60-80%) и почками (20-30%) [7,23]. При хроническом воздействии ксенобиотика большие его количества кумулируются не в печени, а направляются в почку, где он накапливается в эпителиальных клетках канальцев, а также в костную ткань, являющуюся одним из основных его депо. Многочисленными исследованиями, в том числе и проведенными на нашей кафедре, установлено, что кумуляция кадмия в костях вызывает их декальцинацию и изменяет кальциевый обмен организма [4].

В почках тяжелый металл в комплексе с белка-

ми, включая МТ, подвергается клубочковой фильтрации и может поглощаться теми же рецепторами и транспортными системами в корковых и дистальных канальцах, которые участвуют в реабсорбции белков и питательных веществ. Среди них необходимо отметить: ZIP8, ZIP10, ZIP14, DMT1, мегалин, рецептор hNGAL, TRPV5 и транспортер цистеина. Ранее предполагалось, что мегалин и кубилин обеспечивают эндоцитоз отфильтрованного кадмия в связи с МТ, но их роль в поглощении канальцами комплексов кадмия до сих пор не подтвердилась. Так или иначе, кадмий в комплексе с MT поглощается и разрушается эндосомной и лизосомальными ферментативными системами протеаз в клетках канальцев с последующим выбросом токсичных ионов кадмия в цитоплазму [22,24].

Применением методики микроинъекций с введением 109Cd в проксимальные канальцы крысы, было выяснено, что 70-95% инъецированного 109Cd поглощается в этом отделе нефрона. Добавление ионизированного железа, кобальта и цинка к микроинъекции снижало проксимальную реабсорбцию кадмия. А сам кадмий, в свою очередь, уменьшал проксимальную реабсорбцию микроинъецированного 65Zn [18,24]. Все эти данные свидетельствуют в пользу наличия общих конкурентных путей переноса двухвалентных металлов через эпителий проксимальных канальцев. В последние годы методы молекулярной и клеточной биологии используются для идентификации переносчиков, участвующих в реабсорбции ионизированных форм. Установлено, что подобно транспорту в кишечнике, переносчики цинка могут также транспортировать кадмий и медь с низким сродством. Z1P8, Z1P10 и Z1P14 в эксперименте опосредовали поглощение Cd в канальцах — трансгенные мыши с тремя дополнительными копиями гена ZIP8 накапливали вдвое больше кадмия по сравнению с интактной группой. Повышенная экспрессия ZIP8 на апикальной мембране клеток проксимальных канальцев приводит к развитию нефротоксического эффекта кадмия. Установлено, что ZIP10 также может участвовать в канальцевой реабсорбции кадмия, но этот переносчик обнаруживается в большом количестве только в эпителиальных клетках интракортикальных нефро-нов [12,22,24].

DMT1 , как уже отмечалось, может транспортировать железо, цинк, марганец, кадмий и др., но его присутствие в апикальной мембране проксимальных канальцев остается спорным. Считается, что DMT1 локализован в эндосомах и лизосомах клеток проксимальных канальцев крыс, и, предположительно, транспортер может опосредовать высвобождение кадмия из этих образований. Эта роль DMT1 подтверждена в эксперименте, показавшем, что нокдаун экспрессии DMT1 предотвращал токсическое воздействие кадмия в модели культуры проксимальных канальцевых клеток [9,13]. Кроме того, показано, что патогенное воздействие ксенобиотика в почках может усиливаться в состоянии дефицита железа, а

также в условиях, когда уровни экспрессии DMT1 повышаются. Группа исследователей продемонстрировала, что активированные растяжением катион-ные каналы (SAC) также могут участвовать в поглощении двухвалентных форм тяжелых металлов. Эти примеры демонстрируют, что тяжелые металлы могут транспортироваться большим количеством различных транспортеров в проксимальных канальцах; участие каждого еще предстоит выяснить [8,11].

Имеются сведения о том, что отток кадмия из клетки опосредует FPN1, присутствующий в базолате-ральной мембране клеток проксимальных канальцев. Однако высокая специфичность FPN1 к железу и кобальту, а не к кадмию, позволяет предположить, что большая часть отфильтрованного токсиканта кумули-руется в канальцевом эпителии. Измерения клиренса у крыс показали, что во время острой интоксикации поглощается 99% отфильтрованного кадмия, однако большая его часть не возвращается в кровоток, а остается в почках, вызывая патологические изменения и приводя к формированию нефропатии [17,23,24].

Воздействие на отдельные органы и системы в рамках данной статьи мы рассматривать не будем, поскольку развитие проявлений патогенного действия данного тяжелого металла имеет во всех из них однотипные черты — угнетение пролиферации и диффе-ренцировки клеток, а в последующем — их гибель, влияние на процессы перекисного окисления липидов, а также изменение обмена микроэлементов, необходимых для организма в целом. В основе первого механизма токсичности лежит нарушение механизмов репарации ДНК, генерация активных форм кислорода и индукция апоптоза. Влияние кадмия на клеточном уровне приводит к хромосомным аберрациям, сестринскому хроматидному обмену, разрывам цепей ДНК и их патологическим сшивкам при экспериментах на различных клеточных линиях. Рядом исследователей показана способность токсиканта вызывать мутации и хромосомные делеции [7,9,18].

Кадмий может взаимодействовать с митохондриями и ингибировать как клеточное дыхание, так и окислительное фосфорилирование при низких концентрациях. Токсическое воздействие ксенобиотика приводит к истощению восстановленного глутатиона, связыванию сульфгидрильных групп белков и усилению продукции активных форм кислорода, таких как супероксид-ион, перекись водорода и гидроксильные радикалы. Более того, ксенобиотик ингибирует активность антиоксидантных ферментов, таких как ка-талаза, марганец-супероксиддисмутаза и медь/цинк-дисмутаза. Металлотионеин — это концентрат цинка, содержащий 33% цистеина. который также может действовать как акцептор свободных радикалов, удаляя гидроксильные и супероксидные анионы. Как правило, клетки, содержащие металлотионеины, устойчивы к токсичности кадмия. Однако в случае, если способность синтезировать металлотионеины нарушается, чувствительность к интоксикации ксенобиотиком значительно возрастает [9,20].

Учитывая тот факт, что кадмий существует в биологических системах преимущественно в виде иона Сй2+) и при этом структурно напоминает Са(2+), он способен взаимодействовать с рядом внутриклеточных субстратов, требующих наличия кальция, например, кальмодулином и Са(2+) / кальмодулин-зависимой протеинкиназой II типа (CaMK-IГ). Последняя опосредует угнетающее влияние на развитие ци-тоскелета и гибель клеток. Кальмодулин может запускать процессы апоптоза при воздействии ряда агентов, но именно при интоксикации кадмием установлено, что индукция апоптоза предотвращается при блокировке СаМК-11, а, напротив, кальций — зависимое фосфорилирование СаМК-11 усиливается при повышенном уровне ионизированного кадмия [4,10].

Влияние ксенобиотика на морфологию клеток также опосредуется кальмодулин-зависимой протеинкиназой II типа. При этом возникают глубокие дегенеративные изменения актинового цитоскелета, деполимеризация актина, нарушается процесс взаимодействия двух миофиламент и фосфорилиро-вание АДФ. СаМК-11 также участвует в воздействии кадмия на микротрубочки и соединения кадгерина. Пока непонятно, приводит ли разрушение цитоске-лета к апоптозу или, скорее, вызывает ли апоптоз разрушение цитоскелета. Кроме того, тяжелый металл инициирует митохондриальные апоптотиче-ские пути и активирует кальпаины, способствуя ми-тохондриально-независимой гибели клеток. Кадмий модулирует активность каспаз и азот-активированных протеинкиназ, что косвенно также может вызвать апоптоз [9,10,20].

Свинец. Токсические эффекты свинца известны уже более 2000 лет, поскольку свинцовые отравления описаны еще во времена существования Римской империи. В настоящее время воздействие высоких концентраций данного ксенобиотика встречается реже, чем несколько десятилетий назад, из-за лучшей организации промышленного его использования и того факта, что он больше не добавляется в краску и бензин. Однако загрязнение свинцом все еще является проблемой общественного здравоохранения во многих странах вследствие загрязнения воды и почвы [17,19,23]. Так, например, одним из недавних примеров массивного попадания тяжелого металла в окружающую среду является пожар, возникший в знаменитом Соборе Парижской Богоматери. Свинец использовали при строительстве крыши и шпиля Нотр-Дама, а после пожара ядовитая пыль осела вокруг. По словам экологов, в окружающую среду могло попасть почти 400 тонн свинца. Предпринимаются попытки адсорбировать токсикант из почвы с помощью специального геля, но насколько они окажутся эффективными — пока не известно.

Основной путь проникновения свинца в организм — пероральный. По разным данным от 60 до 85% отравлений ксенобиотиком происходят при его поступлении через желудочно-кишечный тракт. Наличие специфических клеточных транспортных

систем для свинца, как и для других тяжелых металлов, маловероятно, поскольку эти металлы не являются необходимыми для организма и, более того, токсичны. Кишечная абсорбция двухвалентных металлов, как уже упоминалось выше, опосредуется DMT1 — переносчиком. Однако если для кадмия DMT1 — основной способ проникновения в клетки кишечного эпителия, то для свинца — нет. Эксперименты на клеточных линиях, в которых блокирована экспрессия данного переносчика, показывают, что существуют другие транспортеры для свинца. К таковым можно отнести описанные в предыдущем разделе ZIP8 и ZIP14, а также кальциевые эпителиальные каналы. Эксперименты, проведенные на нашей кафедре, позволили установить что гипо-кальциемия усиливает всасывание свинца в желудочно-кишечном тракте [1,2]. Очевидно, что в условиях дефицита кальция, его транспортные системы могут использоваться ксенобиотиком для проникновения в организм. Показано, что кальций-селективный канал TRPV6 (кишечная форма) проницаем не только для кальция, но и для других двухвалентных катионов в эпителиальных тканях [4,5,13]. Эксперименты по визуализации живых клеток с Fura-2 и NewPort Green DCF показали, что в условиях увеличения экспрессии человеческого TRPV6 повышается проницаемость для бария, стронция, марганца, цинка, кадмия, свинца. Эти результаты были подтверждены с использованием метода локальной фиксации потенциала, patch-clamp. Попав в энтеро-цит, свинец поглощается кальбайндином — кальций-связывающим белком, который в норме отвечает за перенос кальция к базолатеральной мембране. Показано, что кальбайндин связывает свинец и кальций с одинаковым сродством (5 мкМ). Удаление ксенобиотика через базолатеральную мембрану осуществляется, вероятно, путем экзоцитоза, либо с использованием кальциевого насоса PMCA, однако однозначных литературных данных, описывающих этот этап транспорта, нет [3,5,19].

Попав в кровь, 99% свинца связывается с белками в эритроцитах и распределяется по мягким тканям и костям. До 40% свинца крови связано с сывороточным альбумином, а оставшийся — с сульфгид-рил- или тиолсодержащими лигандами. В организме взрослого человека около 94% всего поглощенного свинца депонируется в костной ткани [1,5]. У детей этот показатель ниже — 73%. Токсикант легко вытесняет кальций в костном матриксе с помощью процессов катионного обмена. Рециркуляция свинца между костью и кровью происходит непрерывно; если бы можно ее было исключить, то период полураспада свинца в крови уменьшился бы с 40 дней до примерно 10 дней. Исследования метаболического баланса показывают, что свинец преимущественно выводится с калом, а выделение с мочой играет второстепенную роль. Следовые количества свинца также могут выводиться через волосы, пот, грудное молоко и ногти [14,17].

Токсичность свинца также может быть обусловлена его способностью заменять различные эндогенные катионы, такие как кальций и цинк, и взаимодействовать с кислородом и серой, являющимися сайтами связывания белков и металлов. Конкурентные взаимоотношения свинца и кальция показаны и работами сотрудников нашей кафедры. Так, выяснено, что гипокальциемия способна усиливать выраженность патогенного воздействие ксенобиотика, а гиперкальциемия, напротив, оказывает некоторое протекторное действие [1-3]. Другие эксперименты показывают, что токсикант имеет ингибирующий эффект на цинк-связывающие белки, но вызывает аномальную активацию некоторых кальций-связывающих белков, таких, как протеинкиназа, кальмодулин и цАМФ фосфодиэстераза [1,20].

Как и другие токсичные металлы (ртуть, мышьяк, кадмий), свинец оказывает повреждающее действие на клетки, в частности, на генетический аппарат [14,19]. Токсикант может провоцировать развитие оксидативного стресса двумя различными, хотя и связанными, путями: (1) образование активных форм кислорода (АФК), включая гидропероксиды, синглетный кислород и перекись водорода, и (2) прямое истощение запасов антиоксидантов. Одной из точек приложения для свинца является глутати-он. Сульфгидрильный комплекс глутатиона прямо связывается с токсикантом, имеющим высокое сродство к сульфгидрильным группам. Таким образом, свинец может инактивировать молекулу глутатиона, выступающим в роли антиоксиданта. Выявлено ин-гибирование ряда других антагонистов ПОЛ, таких как супероксиддисмутаза, каталаза, пероксидаза, так же за счет связывания с их тиоловыми группами. Кроме того, токсикант угнетает активность де-гидратазы дельта-аминолевулиновой кислоты, а накопление дельтааминолевулиновой кислоты в этом случае ведет к ее быстрому окислению с образованием активных форм кислорода. Было показано, что свинец взаимодействует с отрицательно заря-

Читать статью  Топ-10: Самые тяжёлые элементы, известные человечеству

женными фосфолипидами клеточных мембран, тем самым вызывая изменения физических свойств этих образований и последующее возникновение ПОЛ. Он также увеличивает оксидативный потенциал окислителей, образуя свинцово-супероксидные комплексы. Все это в совокупности приводит к повреждению клеток вплоть до их гибели [2,19,20].

Заключение. Таким образом, необходимо отметить, что кинетика кадмия и свинца в организме человека однотипна и следует одной важной закономерности — тяжелые металлы не имеют собственных переносчиков и попадают в клетки организма и кровь, используя транспортные системы, предназначенные для присутствующих в организме в норме металлов и микроэлементов. Что касается патогенеза токсического влияния на организм — то здесь также прослеживаются однотипные черты, характерные для многих видов повреждений, — активация ПОЛ и повреждающее действие на внутриклеточные белки.

1. Ахполова В.О., Брин В.Б., Цаллаева Р.Т. Влияние экспериментальной гипо- и гиперкальциемии на содержание кальция, свинца и цинка в бедренных костях крыс с кратковременной свинцовой и цинковой интоксикацией // Медицинский вестник Северного Кавказа. 2016. Т. 11, № 3. С. 370-373 / Akhpolova VO, Brin VB, Tsallaeva RT. Vliyanie eksperimental’noy gipo- i giperkal’tsiemii na soderzha-nie kal’tsiya, svintsa i tsinka v bedrennykh kostyakh krys s kratkovremennoy svintsovoy i tsinkovoy intoksikatsiey [Effect of experimental Hypo-and hypercalcemia on the content of calcium, lead, and zinc in the femur bones of rats with short-term lead and zinc intoxication]. Meditsinskiy vestnik Severnogo Kavkaza. 2016;11(3):370-3.Russian.

2. Брин В.Б., Бабаниязов Х.Х., Кабисов О.Т., Митци-ев А.К., Пронина Н.В. Влияние ацизола на показатели системной гемодинамики в условиях хронической свинцовой интоксикации // Вестник новых медицинских технологий. 2008. Т. 15, № 3. С. 21-22 / Brin VB, Babaniyazov KhKh, Kabisov OT, Mittsiev AK, Pronina NV. Vliyanie atsizola na pokazateli sistemnoy gemodinamiki v usloviyakh khronicheskoy svintsovoy intoksikatsii [Effect of acizol on systemic hemodynamic parameters in conditions of chronic lead intoxication]. Vestnik novykh meditsinskikh tekhnologiy. 2008;15(3):21-2. Russian.

3. Митциев К.Г., Брин В.Б., Митциев А.К., Кабисов О.Т. Влияние гиперкальциемии, вызванной кальцитриолом на функциональное состояние сердечно-сосудистой системы // Владикавказский медико-биологический вестник. 2012. Т. 14, № 22. С. 120-123 / Mittsiev KG, Brin VB, Mittsiev AK, Kabisov OT. Vliyanie giperkal’tsiemii, vyzvannoy kal’tsitriolom na funktsio-nal’noe sostoyanie serdechno-sosudistoy sistemy [Effect of hypercalcemia caused by calcitriol on the functional state of the cardiovascular system]. Vladikavkazskiy mediko-biologicheskiy vestnik. 2012;14(22):120-3. Russian.

4. Хадарцева М.П., Брин В.Б. Кадмиевая нефропатия в условиях измененного обмена кальция. Саарбрюккен: LAP LAMBERT, 2012. 105 с. / Khadartseva MP, Brin VB. Kadmievaya nefropatiya v usloviyakh izmenennogo obmena kal’tsiya [Cadmium nephropathy in conditions of altered calcium metabolism]. Saarbryukken: LAP LAMBERT; 2012. Russian.

5. Association between single nucleotide polymorphism (rs4252424) in TRPV5 calcium channel gene and lead poisoning

in Chinese workers / Liu J. [et al.] // 3Mol Genet Genomic Med. 2019. Vol. 7, № 3. Article ID e562 / Liu J, et al. Association between single nucleotide polymorphism (rs4252424) in TRPV5 calcium channel gene and lead poisoning in Chinese workers. 3Mol Genet Genomic Med. 2019;7(3):Article ID e562.

6. Bernhoft R.A. Cadmium toxicity and treatment. // The Scientific World Journal. 2013. Vol. 2013. Article ID 394652, 7 P / Bernhoft RA. Cadmium toxicity and treatment. The Scientific World Journal. 2013;2013:Article ID 394652, 7 P.

7. Cadmium Handling, Toxicity and Molecular Targets Involved during Pregnancy: Lessons from Experimental Models. /Jacobo-Estrada T. [et al.] // Int J Mol Sci. 2017. № 18. P. E1590 / Jacobo-Estrada T, et al. Cadmium Handling, Toxicity and Molecular Targets Involved during Pregnancy: Lessons from Experimental Models. Int J Mol Sci. 2017;18:E1590.

8. Cadmium toxicity and treatment: An update. /Rafati Rahimzadeh M. [et al.] // Caspian J Intern Med. 2017. Vol. 8, № 3. P. 135-145 / Rafati Rahimzadeh M, et al. Cadmium toxicity and treatment: An update. Caspian J Intern Med. 2017;8(3):135-45.

9. Cellular mechanisms of cadmium- induced toxicity: a review / Rani A. [et al.] // Int J Environ Health Res. 2014. Vol. 24, № 4. P. 378-399 / Rani A, et al. Cellular mechanisms of cadmium- induced toxicity: a review. Int J Environ Health Res. 2014;24(4):378-99.

10. Choong G., Liu Y., Templeton D.M. Interplay of calcium and cadmium in mediating cadmium toxicity // Chem Biol Interact. 2014. Vol. 25, № 211. P. 54-65 / Choong G, Liu Y, Templeton DM. Interplay of calcium and cadmium in mediating cadmium toxicity. Chem Biol Interact. 2014;25(211):54-65.

11. Cloning, characterization and cadmium inducibility of metallothionein in the testes of the mudskipper Boleophthalmus pectinirostris / Han Y.L. [et al.] // Ecotoxicol Environ Saf. 2015. Vol. 119. P. 1-8 / Han YL, et al. Cloning, characterization and cadmium inducibility of metallothionein in the testes of the mudskipper Boleophthalmus pectinirostris. Ecotoxicol Environ Saf. 2015;119:1-8.

12. Concentration-dependent roles of DMT1 and ZIP14 in cadmium absorption in Caco-2 cells / Fujishiro H. [et al.] // J Toxicol Sci. 2017. Vol. 42, № 5. P. 559-567 / Fujishiro H, et al. Concentration-dependent roles of DMT1 and ZIP14 in cadmium absorption in Caco-2 cells. J Toxicol Sci. 2017;42(5):559-67.

13. Divalent metal transporter 1 in lead and cadmium transport / Bressler J.P. [et al.] // Ann N Y Acad Sci. 2004. Vol. 1012. P. 142-152 / Bressler JP, et al. Divalent metal transporter 1 in lead and cadmium transport. Ann N Y Acad Sci. 2004;1012:142-52.

14. Effects of lead and lead-melatonin exposure on protein and gene expression of metal transporters, proteins and the copper/zinc ratio in rats / Soto-Arredondo K.J. [et al.] // Biometals. 2018. Vol. 31, №5. P. 859-871 / Soto-Arredondo KJ, et al. Effects of lead and lead-melatonin exposure on protein and gene expression of metal transporters, proteins and the copper/zinc ratio in rats. Biometals. 2018;31(5):859-71.

15. Exposure determinants of cadmium in European mothers and their children / Berglund M. [et al.] // Environ Res. 2015. Vol. 141. P. 64-76 / Berglund M, et al. Exposure determinants of cadmium in European mothers and their children. Environ Res. 2015;141:64-76.

16. Neal A.P., Guilarte T.R. Mechanisms of lead and manganese neurotoxicity // Toxicol Res (Camb). 2013. Vol. 1, № 2. P. 99-114 / Neal AP, Guilarte TR. Mechanisms of lead and manganese neurotoxicity. Toxicol Res (Camb). 2013;1(2):99-114.

17. Role of toxic elements in chronic kidney disease / Fevrier-Paul A. [et al.] // J Health Pollut. 2018. V. 6, № 8. Article ID 181202 / Fevrier-Paul A, et al. Role of toxic elements in

chronic kidney disease. J Health Pollut. 2018;6(8):Article ID 181202.

18. Satarug S., Vesey D.A., Gobe G.C. Kidney cadmium toxicity, diabetes and high blood pressure: The Perfect Storm. // Tohoku J Exp Med. 2017. Vol. 241, № 1. P. 65-87 / Satarug S, Vesey DA, Gobe GC. Kidney cadmium toxicity, diabetes and high blood pressure: The Perfect Storm. Tohoku J Exp Med. 2017;241(1):65-87.

19. Shinkai Y., Kaji T. Cellular defense mechanisms against lead toxicity in the vascular system // Biol Pharm Bull. 2012. Vol. 35, № 11. P. 1885-1891 / Shinkai Y, Kaji T. Cellular defense mechanisms against lead toxicity in the vascular system. Biol Pharm Bull. 2012;35(11):1885-91.

20. The biochemical effects of occupational exposure to lead and cadmium on markers of oxidative stress and antioxi-dant enzymes activity in the blood of glazers in tile industry / Hormozi M. [et al.] // Toxicol Ind Health. 2018. Vol. 34, № 7. P. 459-467 / Hormozi M, et al. The biochemical effects of occupational exposure to lead and cadmium on markers of oxidative stress and antioxidant enzymes activity in the blood of glazers in tile industry. Toxicol Ind Health. 2018;34(7):459-67.

21. The liver in itai-itai disease (chronic cadmium poisoning): pathological features and metallothionein expression / Baba H. [et al.] // Mod Pathol. 2013. Vol. 26. P. 1228-1234 / Baba H, et al. The liver in itai-itai disease (chronic cadmium poisoning): pathological features and metallothionein expression. Mod Pathol. 2013;26:1228-34.

22. The protective roles of zinc and magnesium in cadmium-induced renal toxicity in male wistar rats/ Babaknejad N. [et al.] // Iran J Toxicol. 2015. Vol. 8. P. 1160-1167 / Babaknejad N, et al. The protective roles of zinc and magnesium in cadmium-induced renal toxicity in male wistar rats. Iran J Toxicol. 2015;8:1160-7.

23. Vervaet B.A., D’Haese P.C., Verhulst A. Environmental toxin-induced acute kidney injury // Clin Kidney J. 2017. Vol. 10, № 6. P. 747-758 / Vervaet BA, D’Haese PC, Verhulst A. Environmental toxin-induced acute kidney injury. Clin Kidney J. 2017;10(6):747-58.

24. Yang H., Shu Y. Cadmium transporters in the kidney and cadmium-induced nephrotoxicity // Int J Mol Sci. 2015. Vol. 16, № 1. P. 1484-1494 / Yang H, Shu Y. Cadmium transporters in the kidney and cadmium-induced nephrotoxicity. Int J Mol Sci. 2015;16(1):1484-94.

Ахполова В.О., Брин В.Б. Современные представления о кинетике и патогенезе токсического воздействия тяжелых металлов (обзор литературы) // Вестник новых медицинских технологий. 2020. №1. С. 55-61. DOI: 10.24411/1609-2163-2020-16578.

Akhpolova VO, Brin VB. Sovremennye predstavleniya o kinetike i patogeneze toksicheskogo vozdeystviya tyazhelykh metallov (obzor literatury) [Actual concepts of heavy metals’ kinetics and pathogenesis of toxicity]. Journal of New Medical Technologies. 2020;1:55-61. DOI: 10.24411/1609-2163-2020-16578. Russian.

Отравление таллием

Отравление таллием – это симптомокомплекс, возникающий вследствие попадания солей тяжелого металла в организм. В раннем периоде интоксикации развивается диспепсический синдром, дыхательные и сердечно-сосудистые расстройства. Затем присоединяется неврологическая симптоматика: парестезии в конечностях, миалгии, судороги, галлюцинации. Характерный признак таллиевой интоксикации – диффузная алопеция. Диагноз подтверждается после определения концентрации таллия в плазме крови, моче, волосах. Медицинская помощь включает кишечный лаваж, форсированный диурез, антидотную терапию, при необходимости – гемодиализ, гемосорбцию.

МКБ-10

Отравление таллиемАлопеция при отравлении таллиемДетоксикационная терапия при отравлении таллием

Общие сведения

Таллиевая интоксикация – острое, подострое или хроническое отравление, сопровождающееся энтеротоксическими, кардиотоксическими, нейротоксическими, нефротоксическими и другими эффектами. Несмотря на невысокий удельный вес в структуре интоксикаций тяжелыми металлами, отравления таллием занимают среди них особое место в связи с высокой токсичностью соединений, трудностями диагностики, лечения, высокими рисками смертельного исхода. Нередко они принимают форму массового отравления – последний инцидент с более чем 40 пострадавшими, произошел на авиастроительном предприятии г. Таганрога в 2017 г.

Отравление таллием

Причины

Отравления солями таллия могут носить бытовой или производственный, случайный, суицидальный или криминальный характер. Токсические соединения могут проникать в организм энтеральным (с пищей, водой), ингаляционным (с вдыхаемыми парами и пылью), перкутанным путем (через неповрежденные кожные покровы). Отравление таллием возможно в следующих случаях:

  • Контакт с ядохимикатами. Соли таллия содержатся в инсектицидах, используемых в сельском хозяйстве для борьбы с вредителями. Также сульфаты таллия входят в состав родентицидов (крысиного яда), поэтому отравление может произойти во время обработки культурных растений, дератизации помещений без средств защиты.
  • Промышленный контакт с металлом. Повышенный риск отравления на производстве имеют рабочие, занятые выпуском электротехнического оборудования, пиротехники, флуоресцентной краски, термометров, оптических линз, ювелирных изделий и другой продукции.
  • Употребление загрязненной воды и пищи. Случаи групповых и массовых отравлений описаны при употреблении зерна, растительной пищи, питьевой воды, содержащей соли таллия. Эти отравления могут быть как непреднамеренными, так и умышленными (с целью убийства одного или группы лиц, химического терроризма). От повышенного поступления таллия в организм в большей степени страдают вегетарианцы, курящие люди.
  • Использование в лечебно-диагностических целях. В недавнем прошлом соли таллия использовались для лечения стригущего лишая, удаления нежелательных волос в составе кремов-депиляторов. В настоящее время в медицине применение таллия ограничено его присутствием в радиоактивных изотопах (199Tl, 201Tl , 204Tl), используемых для проведения сцинтиграфии и ОФЭКТ миокарда. Теоретически, интоксикация может развиться при введении слишком высокой дозы препарата.

Патогенез

Таллий (Tl) входит в группу высокотоксичных тяжелых металлов 1-го класса опасности, оказывает выраженное повреждающее действие на органы ЖКТ, дыхания, кровообращения, нервную систему, почки. Токсическая концентрация Tl составляет 0,1-0,5 мкг/мл в плазме крови и более 0,2 мкг/мл в моче. Летальная доза при приеме токсиканта внутрь ‒14-20 мг/кг.

Максимальная концентрация в крови достигается уже через 2-3 часа после отравления. В организме таллий неравномерно накапливается в различных органах: почках, половых железах, селезенке, головном мозге, костном мозге, волосах. Период полувыведения Tl может занимать от 3-5 до 30 суток. Из организма таллий выводится преимущественно через органы мочевыделения и кишечник, в меньшей степени с желчью, потом, слюной, кожным салом.

Основные токсические эффекты связаны со способностью ионов Tl+ замещать ионы K+ в натрий-калиевой аденозинтрифосфатазе, что приводит к вытеснению внутриклеточного калия. Нарушая функционирование различных ферментов, таллий ингибирует синтез многих белков. Токсический элемент образует нерастворимые комплексы с витамином В2, тем самым вызывает расстройство обмена рибофлавина, его недостаточность, нарушение энергетического обмена в клетках. Таллиевая интоксикация приводит к усилению процессов перекисного окисления липидов, повреждению мембран и клеточной гибели.

Накапливаясь в волосяных фолликулах, таллий угнетает синтез кератина, вызывая атрофию волосяных луковиц и выпадение волос. На сегодняшний день также доказано энтеротоксическое, нейротоксическое, кардиотоксическое, нефротоксическое, мутагенное действие металла. Таллий может преодолевать плацентарный барьер, вызывая врожденную алопецию и дистрофию ногтей у плода.

Читать статью  ОСНОВЫ ДЕТОКСИКАЦИИ … - Международный студенческий научный вестник (сетевое издание)

Алопеция при отравлении таллием

Симптомы отравления таллием

Клиническая картина таллиевой интоксикации зависит от ряда факторов: дозы, способа попадания токсиканта в организм, длительности контакта. Первые признаки острого отравления появляются в сроки от нескольких часов до 1-2 суток. Раньше всего возникает токсический гастроэнтерит, сопровождающийся рвотными позывами, болями в эпигастрии, диареей (иногда кровавой) или запорами. Одним из характерных ранних признаков отравления таллием служит окрашивание мочи в зеленый цвет.

Симптомы поражения ЖКТ сохраняются несколько суток, затем к ним присоединяются дыхательные и кардиоваскулярные расстройства: одышка, кашель, тахикардия, аритмия, повышение АД (реже – артериальная гипотония), боль в груди.

В результате отравления таллием существенно страдает ЦНС. Неврологические нарушения представлены бессонницей, постуральным тремором, мышечными болями, атаксией, эпилептиформными судорогами. Типичны болезненные парестезии в области конечностей с последующим формированием вялых параличей, пара- или тетрапареза. Поражение зрительного нерва проявляется двоением в глазах, птозом, снижением зрения, косоглазием. Возможны психические расстройства в виде дезориентации, неадекватного поведения, галлюцинаций.

Через 10-14 дней после контакта с таллием начинается выпадение волос, носящее диффузный характер. Появляются изменения кожи (шелушение, трещины, подошвенный и ладонный гиперкератоз, гиперпигментация) и ногтевых пластин (ломкость, поперечные белые линии). При благоприятном исходе долгое время сохраняются неврологические нарушения, выпадение волос прекращается спустя 1-2 месяца.

Осложнения

По своим токсигенным последствиям отравление таллием сопоставимо с отравлениями мышьяком и свинцом. При таллиевой интоксикации поражается одновременно несколько систем, развивается токсическая энцефалопатия, токсическая миокардиодистрофия, дыхательная и почечная недостаточность.

При тяжелых острых интоксикациях быстро наступает коматозное состояние, в течение 3-10 суток пострадавший может погибнуть от паралича дыхательной мускулатуры, острой сердечной недостаточности, отека мозга. Опасным, потенциально фатальным осложнением является кишечное кровотечение.

К числу нефатальных осложнений таллиевой интоксикации относятся атрофия сетчатки, импотенция у мужчин и бесплодие у женщин, депрессия, необратимое снижение когнитивных функций.

Диагностика

Диагностика отравления таллием весьма затруднительна ввиду отсутствия четких анамнестических данных, многообразия и неспецифичности симптомов. Пострадавшим требуется осмотр токсиколога, невролога, гастроэнтеролога, офтальмолога, психиатра, дерматолога. Для прижизненной постановки этиологического диагноза используют следующие методы:

  • Анализ на тяжелые металлы. Содержание таллия определяют в моче, сыворотке крови методом масс-спектрометрии. Интоксикация диагностируется при превышении референсных значений: >0,72 мкг/л в крови, >1 мкг/л в моче. В более поздние сроки для химико-токсикологического анализа можно использовать волосы и ногти.
  • ЭФИ. Для изучения состояния нервно-мышечной передачи выполняется электронейромиография, при повышенной судорожной активности может потребоваться ЭЭГ. Сердечно-сосудистые нарушения регистрируются с помощью электрокардиографии.
  • Офтальмологическое обследование. При развитии оптической нейропатии проводится визометрия, офтальмоскопия, биомикроскопия глазного дна, электроретинография.

Дифференциальная диагностика

В ходе дифференциальной диагностики решается задача исключения следующих патологий:

  • отравление другими химическими соединениями (свинцом, ртутью, селеном, мышьяком);
  • полиомиелит;
  • синдром Гийена-Барре;
  • алиментарный полиневрит (гиповитаминоз В1);
  • ботулизм;
  • острая порфирия;
  • лекарственная интоксикация (изониазидом, фенитоином и др.).

Детоксикационная терапия при отравлении таллием

Лечение отравления таллием

Больных с таллиевой интоксикацией госпитализируют в отделения токсикологии или ОРИТ. Основные этапы лечения включают прекращение поступления токсиканта, его выведение из организма, коррекцию функциональных нарушений. В этих целях проводится:

  • Детоксикация. Для удаления яда в первые часы после диагностики отравления осуществляют промывание желудка, кишечный лаваж солевыми растворами, дают слабительные. Назначают прием активированного угля, который хорошо адсорбирует таллий. Для усиления почечной экскреции проводят форсированный диурез. При тяжелых отравлениях используют экстракорпоральные методы детоксикации: гемодиализ, гемодиафильтрацию, гемосорбцию, плазмаферез.
  • Антидотная терапия. В качестве антидота при отравлениях таллием применяют калий-железо гексацианоферрат, унитиол, растворы йодистого калия или натрия. Эти препараты образуют с таллием малорастворимые соединения, не позволяют ему всасываться в кишечнике и ускоряют выведение из организма.
  • Поддержка витальных функций. При необходимости проводят коррекцию сердечно-сосудистых и дыхательных расстройств. Осуществляют инфузионную волемическую и инотропную поддержку, вводят кардиотропные средства, гепатопротекторы. При дыхательной недостаточности проводят оксигенотерапию, по показаниям – ИВЛ.
  • Нейротропная терапия. С целью купирования неврологических симптомов назначают витамины группы В, a-липоевую кислоту, корректоры микроциркуляции, антихолинэстеразные препараты. При необходимости добавляют анальгетики, седативные средства.

Прогноз и профилактика

Тяжелые отравления соединениями таллия сопровождаются критическим расстройством жизненно важных функций (кровообращения, дыхания, нервной регуляции), нередко заканчиваются летально и диагностируются посмертно. От точности и скорости диагностики, сроков начала интенсивной терапии напрямую зависит исход события. У выздоровевших пациентов долго сохраняются мононейропатии, тремор, астения, эмоциональные и когнитивные расстройства. Пострадавшим требуется длительное неврологическое лечение и психологическая реабилитация. Профилактика отравления таллием складывается из обеспечения производственной безопасности, борьбы с загрязнением почв и водных ресурсов, предотвращения криминальных инцидентов.

2. Массовое отравление таллием/ Поцхверия М. М., Остапенко Ю. Н., Петриков С. С., Симонова А. Ю., Завалий Л. Б. и др.// Журнал им. Н. В. Склифосовского Неотложная медицинская помощь. – 2019.

3. Характеристика неврологических расстройств у пациентов с острым отравлением таллием/ Завалий Л. Б., Петриков С. С., Симонова А. Ю., Поцхверия М. М., Остапенко Ю. Н.

4. Особенности ранней диагностики и лечения острых отравлений соединениями таллия/ Ливанов Г.А., Батоцыренов Б.В., Остапенко Ю.Н., Шестова Г.В., Рутковский Г.В., Малыгин А.Ю.// Общая реаниматология. – 2013. — I X; 3.

Поражения печени (токсический гепатит)

Иконка обновить

Обновлено: 24.05.2022

Иконка глаз

Просмотров: 104648

    / / /
  • Поражения печени (токсический гепатит)

Иконка список

ЗАПИСАТЬСЯ НА ПРИЁМ

Получите консультацию гастроэнтеролога

Обслуживание на двух языках: русский, английский.
Оставьте свой номер телефона, и мы обязательно перезвоним вам.

Информацию из данного раздела нельзя использовать для самодиагностики и самолечения. В случае боли или иного обострения заболевания диагностические исследования должен назначить только лечащий врач. Для постановки диагноза и правильного назначения лечения следует обращаться к Вашему лечащему врачу.

Кондрашова Елена Александровна

Специалисты отделения гастроэнтерологии и гепатологии Клинического госпиталя на Яузе успешно диагностируют лекарственное и токсическое поражение печени и назначают оптимальное лечение для восстановления печеночной функции. Пациенту предлагается пройти комплексное обследование, включающее лабораторные анализы (общий и биохимический анализы крови, а также пакет анализов, которые исключают другую патологию печени) и инструментальные (УЗИ органов брюшной полости, ФГДС, по показаниям — КТ и МРТ, фиброэластографию). По результатам обследования ставится диагноз и подбирается терапия, направленная на восстановление работы печени.

Виды поражений печени

Исходя из причин, повлекших патологические изменения в печеночной ткани, различают несколько видов поражений указанного органа:

  • токсическое;
  • лекарственное;
  • иммунное;
  • инфекционное;
  • дистрофическое;
  • онкологическое;
  • метаболическое

Из всех вышеперечисленных видов чаще всего встречаются лекарственное и токсическое поражение печени. Лекарственное поражение развивается на фоне длительного приема некоторых видов лекарственных препаратов. В группе повышенного риска дети до трех лет и люди старше сорока.

Что касается токсического поражения, то его провоцирует воздействие на организм токсических веществ, основным из которых является алкоголь и продукты его распада. По последним данным, около трети людей, страдающих алкоголизмом, имеют те или иные проблемы с печенью.

Причины поражений печени

Среди наиболее распространенных причин развития поражений печени можно выделить:

  • длительное злоупотребление алкоголем;
  • употребление наркотиков;
  • отравление солями тяжелых металлов (ртуть, медь, цинк и другие);
  • интоксикация различными ядами (альдегиды и фенолы, хлороформ и производные бензола, мышьяк и медный купорос и прочие);
  • потребление продуктов, в которых содержится афлотоксин («лежалые» пшеница, рис, соя, испорченные кукуруза и арахис, блюда из них);
  • отравление ядовитыми грибами;
  • продолжительный или одномоментный прием в больших дозах некоторых лекарств (психотропные, противосудорожные, антибактериальные препараты и гормональные контрацептивы, нестероидные противовоспалительные средства, блокаторы кальция, противотуберкулезные и противогрибковые препараты, цитостатики и прочие).

Все это является факторами риска и при негативных обстоятельствах может повлечь серьёзные нарушения в работе главного фильтрующего органа, что чревато развитием печеночной недостаточности, а при отсутствии правильного лечения нередко приводит к циррозу, инвалидизации и даже смерти. К счастью, при своевременном обращении за медицинской помощью шансы пациента на выздоровление весьма высоки. Специалисты нашего госпиталя готовы помочь пациентам на любой стадии заболевания, подобрав индивидуальную методику с учетом особенностей течения болезни у конкретного пациента.

Симптомы

Выделяют острое (одномоментное употребление отравляющего вещества) и хроническое (вещество, содержащее токсин, поступает в небольшом количестве в организм, но достаточно продолжительное время) токсическое и лекарственное поражение печени. В случае хронического отравления, ввиду высокой способности печени к регенерации и отсутствия у неё нервных окончаний, токсическое поражение печени, симптомы которого будут описаны ниже, может долго протекать скрыто, проявляясь клинически , когда печеночные ткани уже значительно разрушены.

Поводом насторожиться и проконсультироваться со специалистом являются следующие симптомы:

  • тошнота и рвота;
  • горечь во рту;
  • потеря веса;
  • снижение аппетита;
  • изменение цвета кала и мочи;
  • расстройство стула;
  • постоянная слабость;
  • усиливающаяся сонливость;
  • кожный зуд;
  • пожелтение кожи и слизистых оболочек.

При сочетании нескольких симптомов необходимо незамедлительно обратиться к врачу. В клиническом госпитале на Яузе вы сможете быстро попасть на прием и пройти полное обследование в самые кратчайшие сроки.

Диагностика в клиническом госпитале на Яузе

Диагностика поражений печени в клиническом госпитале на Яузе направлена в первую очередь на установление причины, повлекшей за собой токсическое отравление печени. Для этого с пациентом проводится беседа, в ходе которой выясняется, какие лекарства употреблял пациент, в каких условиях работает, злоупотребляет ли он алкоголем, подвергался ли он воздействию каких-либо иных токсичных веществ, в каких дозах вещество попадало в организм и т.п.

Для постановки точного диагноза и выбора наиболее подходящей схемы лечения пациента направляют на обследование, которое состоит из лабораторной и инструментальной диагностики.

Лабораторная диагностика включает:

  • биохимический анализ крови;
  • общий анализ крови.

Общий анализ крови позволяет оценить состояние организма в целом, тогда как биохимическое исследование дает развернутую картину функционального состояния печени, почек, поджелудочной железы, часто также страдающих при отравлении. Особое внимание здесь уделяется уровню ферментов печени и их соотношению. Оцениваются общий, прямой и свободный билирубин, аспартатаминотрансфераза, аланинаминотрансфераза, холинэстеразы, альбумин, протромбиновый индекс.

Инструментальная диагностика включает в себя:

  • УЗИ органов брюшной полости;
  • эзофагогастродуоденоскопию.
  • КТ и МРТ;
  • фиброэластографию;
  • по показаниям — эндоУЗИ.

Все исследования в нашем госпитале проводятся на современном высокоинформативном оборудовании, позволяющем быстро и точно диагностировать поражения печени и определять стадию заболевания.

Установление степени тяжести поражения печени

По данным лабораторных исследований устанавливается степень тяжести поражения гепатоцитов, активности процесса. Здесь особое внимание уделяется уровню ферментов, выделяемых организмом для детоксикации. В зависимости от превышения уровня ферментов в крови определяется выраженность воспаления (от слабо-активного до высоко-активного гепатита). Важным моментом здесь также является отслеживание нарастания признаков печеночной недостаточности, по которому можно судить об остром или хроническом характере отравления, вызвавшего токсический гепатит.

Лечение в клиническом госпитале на Яузе

Как только пациенту ставится точный диагноз, наши специалисты незамедлительно назначают лечение, оно проводится в несколько этапов:

  • устранение влияния токсина;
  • назначение специальной «печеночной» диеты, соблюдение которой «щадит» печень
  • дезинтоксикация организма и введение антидотов;
  • назначение препаратов для восстановления функций печени.

Первоочередной задачей, конечно же, является устранение влияния вещества, вызвавшего поражение печени. Если причина кроется в употреблении какого-либо медикаментозного препарата, без которого пациенту не обойтись, врач заменяет его на другое, менее токсичное лекарство, либо снижает дозу до минимума. В этом случае может потребоваться совместная работа гепатологов и специалистов других направлений медицины для подбора препарата, выполняющего свою задачу, но не вызывающего лекарственное поражение печени, симптомы которого необходимо купировать. Возможности нашего госпиталя позволяют специалистам разных областей консультироваться друг с другом и совместно подбирать лечение.

Преимущества лечения в нашем госпитале

  • Врачи. Диагностикой и лечением поражений печени в госпитале на Яузе занимаются высококвалифицированные специалисты с большим опытом практической работы в области гепатологии и гастроэнтерологии.
  • Точность диагностики. Новейшее лабораторное и инструментальное оборудование, используемое в нашем госпитале, отличается высокой точностью, что позволяет безошибочно устанавливать диагнозы.
  • Индивидуальный подход. Мы учитываем особенности каждого клинического случая и пациента при подборе методов диагностики, медикаментозного лечения, фитотерапии, диеты и т.п.
  • Оперативность. Мы ценим ваше время и знаем, как важно иметь возможность приступить к лечению без промедления, потому стараемся обслуживать пациентов в самые кратчайшие сроки.
  • Высокое качество оказания услуг. Качество наших услуг полностью соответствует высоким требованиям международных стандартов.
  • Всесторонняя поддержка. Обратившись к нам, пациенты могут рассчитывать на всестороннюю поддержку: наши специалисты ответят на любые вопросы, дадут рекомендации, а при необходимости окажут психологическую помощь.

Стоимость услуг

Цены на услуги Вы можете посмотреть в прайсе или уточнить по телефону, указанному на сайте.

Цены на услуги гастроэнтеролога

  • Стандартные консультации
  • Прием (осмотр, консультация) врача-гастроэнтеролога первичный 3 900 руб.
  • Прием (осмотр, консультация) врача-гастроэнтеролога повторный 3 500 руб.
  • Первичный прием врача-гастроэнтеролога Мельниковой Е.Г. 2 300 руб.
  • Телеконсультации
  • Удаленная консультация врача-гастроэнтеролога первичная 2 500 руб.
  • Удаленная консультация врача-гастроэнтеролога повторная 2 200 руб.
  • Помощь на дому
  • Прием (осмотр, консультация) врача-терапевта с выездом на дом в пределах МКАД 5 500 руб.

Внимание! Цены на сайте могут отличаться.
Пожалуйста, уточняйте актуальную стоимость у администраторов по телефону.

Источник https://cyberleninka.ru/article/n/sovremennye-predstavleniya-o-kinetike-i-patogeneze-toksicheskogo-vozdeystviya-tyazhelyh-metallov-obzor-literatury

Источник https://www.krasotaimedicina.ru/diseases/urgent/thallium-poisoning

Источник https://www.yamed.ru/services/gastrojenterologiya/porazheniya-pecheni/

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *